
Towards More Efficient Mobile UI Design:
Automatic Code Generation from

Hand-Drawn Sketches Using Deep Learning

Daniel Leivers

Master of Science in Artificial Intelligence
The University of Bath

2023



This dissertation may be made available for consultation within the University
Library and may be photocopied or lent to other libraries for the purposes
of consultation.



Towards More Efficient Mobile UI Design:
Automatic Code Generation from

Hand-Drawn Sketches Using Deep Learning

Submitted by: Daniel Leivers

Copyright

Attention is drawn to the fact that copyright of this dissertation rests
with its author. The Intellectual Property Rights of the products produced
as part of the project belong to the author unless otherwise specified be-
low, in accordance with the University of Bath’s policy on intellectual
property (see https://www.bath.ac.uk/publications/university-
ordinances/attachments/Ordinances_1_October_2020.pdf).
This copy of the dissertation has been supplied on condition that anyone
who consults it is understood to recognise that its copyright rests with
its author and that no quotation from the dissertation and no information
derived from it may be published without the prior written consent of the
author.

Declaration

This dissertation is submitted to the University of Bath in accordance with
the requirements of the degree of Master of Science in the Department of
Computer Science. No portion of the work in this dissertation has been
submitted in support of an application for any other degree or qualification
of this or any other university or institution of learning. Except where
specifically acknowledged, it is the work of the author.

https://www.bath.ac.uk/publications/university-ordinances/attachments/Ordinances_1_October_2020.pdf
https://www.bath.ac.uk/publications/university-ordinances/attachments/Ordinances_1_October_2020.pdf


Abstract

In this dissertation we describe the process of designing and building an application to support
the creation of mobile application user interface (UI) prototypes. While paper prototypes have
generally been the most popular choice for the early stages of designing an app, it still takes
time to implement those prototypes in code, we aim to speed up this process by generating
the code as a user draws their prototype.

To solve this problem we developed an iPad app which allows a user to draw using the Apple
Pencil. This presents us the opportunity to apply deep learning techniques on the device to
recognise what the user has drawn, providing the user with near real-time feedback. In this
dissertation we discuss the design, development, user testing and evaluation of the resulting
app.

A video demonstration of the app is available on YouTube https://www.youtube.com/
watch?v=SKGdZ3H9eyY and the source code can be accessed on GitHub https://github.
com/Otaku-Development/msc-final-project.

https://www.youtube.com/watch?v=SKGdZ3H9eyY
https://www.youtube.com/watch?v=SKGdZ3H9eyY
https://github.com/Otaku-Development/msc-final-project
https://github.com/Otaku-Development/msc-final-project


Contents

1 Introduction 1
1.1 High fidelity vs. low fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 SwiftUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 What are we doing differently? . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Problem conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature and Technology Survey 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Mobile app design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Sketch input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Approaches for object detection and classification . . . . . . . . . . . . . . . 6

2.4.1 You only look once (YOLO) . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Training data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Approaches for code generation . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Native vs. cross-platform development . . . . . . . . . . . . . . . . . . . . 12

2.7.1 Native development . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7.2 Cross-platform development . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9 Literature review conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Requirements 16
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Detailed requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Design 19
4.1 Data capture tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Data acquisition and preparation . . . . . . . . . . . . . . . . . . . 20
4.2 Training the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Drawing app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ii



CONTENTS iii

4.3.2 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Implementation and Testing 23
5.1 Data capture tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 User consent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.2 Example apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.3 Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.4 Labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.5 Post processing and storing . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Training the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Fetching and pre-processing . . . . . . . . . . . . . . . . . . . . . . 30
5.2.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.4 Converting to CoreML . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.5 Non-maximum suppression (NMS) . . . . . . . . . . . . . . . . . . 35

5.3 Drawing app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3.1 Making predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3.2 Preview generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3.3 Code generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.5 Exporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Results 49
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 Themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3.1 Theme 1: Detection and classification . . . . . . . . . . . . . . . . . 50
6.3.2 Theme 2: Correcting . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.3 Theme 3: Onboarding . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.4 Theme 4: Drawing and responsiveness . . . . . . . . . . . . . . . . 52
6.3.5 Theme 5: Transitioning to code . . . . . . . . . . . . . . . . . . . . 52
6.3.6 Theme 6: Theming . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3.7 Theme 7: Other tools and user workflows . . . . . . . . . . . . . . . 53

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Discussion and critical reflection 54
7.1 Data capture tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.2 Training the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.3 Drawing app . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.4 Code generation and exporting . . . . . . . . . . . . . . . . . . . . . . . . 60
7.5 Compatibility with users’ workflows . . . . . . . . . . . . . . . . . . . . . . 60
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Conclusion 62
8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.2 Comparison to our original requirements . . . . . . . . . . . . . . . . . . . 64
8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.3.1 Improvements to the data capture tool . . . . . . . . . . . . . . . . 65



CONTENTS iv

8.3.2 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.3.3 Detection and classification . . . . . . . . . . . . . . . . . . . . . . 66
8.3.4 Other platforms and languages . . . . . . . . . . . . . . . . . . . . 66
8.3.5 Extending code generation . . . . . . . . . . . . . . . . . . . . . . . 67
8.3.6 High fidelity design output . . . . . . . . . . . . . . . . . . . . . . . 67
8.3.7 General improvements . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 69

A Raw Results Output 75
A.1 User survey results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.2 Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B Model 87



List of Figures

1.1 The app design process in broad strokes (Flarup, 2016) . . . . . . . . . . . . 1
1.2 The sketch to design continuum (Lepore, 2010) . . . . . . . . . . . . . . . 2

2.1 Low fidelity sketches of UI components (Adefris, Habtie and Taye, 2022) . . 9

4.1 Data science pipeline overview (Biswas, Wardat and Rajan, 2022) . . . . . . 20

5.1 The architecture of the data capture tool . . . . . . . . . . . . . . . . . . . 24
5.2 An annotated screenshot of the data capture tool user interface . . . . . . . 25
5.3 User consent screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Generated bounding boxes versus user confirmed bounding boxes . . . . . . 27
5.5 Combining bounding boxes . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.6 Splitting bounding boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.7 Bounding box labelling options . . . . . . . . . . . . . . . . . . . . . . . . 28
5.8 An image drawn by a user, labelled and stored . . . . . . . . . . . . . . . . 29
5.9 The bounding box data (top) for the sample sketch (bottom) . . . . . . . . 31
5.10 Example of our training data with mosaic data augmentation applied . . . . 32
5.11 Example of our training data with mosaic and mixup data augmentation applied 33
5.12 Experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.13 Example object detection output, and after applying NMS (Prakash, 2021) . 36
5.14 The drawing app layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.15 The resource usage of the drawing app . . . . . . . . . . . . . . . . . . . . 39
5.16 How the user’s drawing affects the resulting navigation bar . . . . . . . . . . 40
5.17 Apple’s navigation bar styles . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.18 Examples of how labels are displayed in the preview panel . . . . . . . . . . 43
5.19 A sketch drawn to gather timings from the model running . . . . . . . . . . 45
5.20 Exporting the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1 The drawing app with the model debug view enabled. . . . . . . . . . . . . 51

7.1 Confusion matrices from experiments 34 and 35 . . . . . . . . . . . . . . . 57
7.2 F1 curves from different versions of YOLO . . . . . . . . . . . . . . . . . . 57
7.3 A drawing showing the difference between model output, debug mode and

actual drawing bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B.1 The full pipeline containing the trained model and the NMS model at the end. 87

v



List of Tables

5.1 The number of training data examples for each UI element class . . . . . . . 30

A.5 The time taken in seconds to run our trained model and the time taken to run
our model and generate code. . . . . . . . . . . . . . . . . . . . . . . . . . 86

vi



Acknowledgements

This dissertation marks the culmination of an important academic journey, and I owe my
gratitude to several key individuals for their support.

First, I extend my sincere appreciation to my supervisor, Dr. Zack Lyons, for their valuable
feedback and encouragement throughout this process. Your guidance has been instrumental in
the development of this work.

I also want to express my heartfelt thanks to my partner, Emma, for her understanding and
unwavering support. Her diligent proofreading and dedicated care for our little boy, Ben, have
been indispensable.

vii



Chapter 1

Introduction

Good design and user experience (UX) often separates a successful mobile application (app)
from an unsuccessful app. Since the Apple App Store launched in 2008, businesses compete to
sell their software to users and the look and feel of an app often becomes the differentiating
factor for a user choosing a particular app. Apple host yearly app design awards (Apple, 2023a)
to reward well built apps and, given the amount of money that can be made on the App Store,
businesses are willing to invest large sums in an attractive user interface (UI).

The process of designing an app is highly iterative (Figure 1.1), moving through paper based
sketches, wireframes, higher fidelity mock ups and prototypes (both programmatic and paper)
before achieving the final design with user testing occurring at multiple stages of the process.
This is a lengthy process and may be repeated multiple times to evolve the UX and UI. Time
restrictions sometimes means that user testing isn’t undertaken for all design iterations and
feedback from (potential) users can be missed.

Typically, designers use a design tool such as Figma, Sketch or Photoshop to produce a design
document for developers to reference when implementing the app. The developers on Apple
platforms generally use Xcode and its built in tools to create a functional implementation of
the design. Apple’s current recommendation for implementing user interfaces on iOS (and
iPadOS and macOS) apps is SwiftUI.

Figure 1.1: The app design process in broad strokes (Flarup, 2016)

Designing and implementing a mobile UX and UI is complex and time-consuming and requires
a high level of expertise in design and coding. End-users who do not have coding expertise

1



CHAPTER 1. INTRODUCTION 2

often struggle to translate their UI designs into code, which can result in miscommunication
and errors in the development process.

The cost of hiring the specialist designer skills required to build mobile apps is high, as shown
by the salary information gathered by StackOverflow (2023), and creating an app is expensive
(Dogtiev, 2023). Given that much of the development time for a mobile app is spent on coding
the UI from a set of designs it’s clear that there is potential for a large time and cost saving
by reducing the manual work in this area (King, 2023).

This problem is particularly relevant for small businesses and individuals who cannot afford to
hire a dedicated designer or developer and start ups who need to move quickly to prove their
business. There is a clear need for an automated solution that enables users to create UI code
from designs without requiring any coding knowledge and developers to translate UI designs
into code more quickly.

Furthermore, Flora, Wang and Chande (2014) found that 50% of participants in their survey
considered creating prototypes to be a top priority for creating "an excellent user experience"
and making an app more successful.

Enabling the rapid development of UI code would vastly increase the speed at which usable
prototypes can be created, speeding up the design iteration cycle (Figure 1.2) and reducing
the time for feedback from potential users.

Figure 1.2: The sketch to design continuum (Lepore, 2010)

To address this problem, this project aims to develop an Artificial Intelligence (AI) system that
can automatically generate SwiftUI code from hand-drawn sketches of mobile UI designs. The
system will allow end-users to create sketches using an iPad app which then generates SwiftUI
code that can be used (at least as a starting point) to implement their designs in a mobile app.

1.1 High fidelity vs. low fidelity

Each stage of the app development lifecycle requires different levels of designs. In the early
stages of a project, rough or unpolished designs are created for use in ideation or prototyping
(Babich, 2023). These are often referred to as "low fidelity" designs. Typically these designs
are low in detail, black and white and created using pen and paper or digitally. The benefit of
these low fidelity designs is that they are quick, easy and low cost to create, however they are



CHAPTER 1. INTRODUCTION 3

not always suitable for making design decisions as they lack enough detail to allow stakeholders
to fully envision the final app (UXPin, 2021).

As a project progresses designs are refined further. Colour is added along with greater detail
such as animations to create "high fidelity" designs. High fidelity designs are created digitally
and are ideal for sharing with stakeholders as they aim to closely represent the final app design,
however they are more expensive and time consuming to create than lower fidelity versions
(UXPin, 2021).

1.2 SwiftUI

SwiftUI is a modern UI framework introduced by Apple in 2019 (Apple, 2023k) that enables
developers to build user interfaces using a declarative syntax. SwiftUI offers several advantages
over traditional UI frameworks, including improved code maintainability, ease of use, and a live
preview feature that allows developers to see their changes inline in the Xcode editor. This
makes SwiftUI a good choice for this project, as we can replicate the preview to show the
generated code inline in our app and ensure that it accurately reflects the intended UI design.

SwiftUI is a subset of Swift, specifically aimed at declaring a user interface. While Swift can
be compiled on other platforms such as Linux, various Apple frameworks such as UIKit or
SwiftUI are only available on Apple platforms and as such can only be compiled against or
linked to on these platforms.

1.3 Deep learning

Recent advances in deep learning have led to significant progress in automatic code generation
from UI design sketches. For example, Beltramelli (2017) proposed a system that can generate
code from hand-drawn sketches of UI designs using a combination of convolutional neural
networks (CNNs) and recurrent neural networks (RNNs). Similarly, Baulé et al. (2021) presented
a deep learning-based approach for generating code from sketches of mobile apps created by
end-users. Aşıroğlu et al. (2019) also propose an approach using CNNs for generating HTML
from hand drawn mock up images and there are further examples that use higher fidelity
designs like Bajammal, Mazinanian and Mesbah (2018).

These papers demonstrate the feasibility and potential of using deep learning techniques for
automatic code generation from sketches of UI designs.

1.4 What are we doing differently?

Baulé et al. (2020) review the current state of code generation from images. Their research
shows that iOS is an under-served area and that there doesn’t seem to have been any efforts
to "cut out the middleman" and draw designs directly on a device.

Baulé et al. (2021) focus on generating UI for a tool called App Inventor (MIT, 2022) which
generates Android apps. However, the tool only recognises limited layouts and UI components.

Our project aims to allows users to generate UI code directly for the platform they are using
(iOS) and to explore the recognition of additional layouts and components if possible. By



CHAPTER 1. INTRODUCTION 4

choosing SwiftUI we are outputting designs using the current industry standard format for iOS
app development, rather than creating another intermediate tool.

Many previous approaches involve digitising a pen and paper sketch to generate code on
a computer. Our proposed approach saves time for users by skipping the need to capture
their paper sketches using a camera and providing immediate feedback on the generated code
as it gets rendered inline. In addition, this approach potentially provides routes for further
exploration such as running the AI model on device, generating UI during the drawing process
or attempting to augment the user’s drawing skills with suggestions.

1.5 Research question

How does the use of an iPad app for sketching mobile designs, which automatically generates
code, impact the efficiency of rapid prototyping in UI/UX design, and in what ways does this
method offer advancements over conventional prototyping techniques?

1.6 Problem conclusion

In this project, we will focus on developing an AI system that can generate SwiftUI code from
hand-drawn (low fidelity) sketches of mobile UI designs in an effort to improve the efficiency
of the prototyping phase of app development. We will use deep learning techniques to extract
meaningful features from the sketches and generate corresponding code. As part of this we
will develop an iPad app that allows end-users to create hand-drawn sketches of mobile UI
designs using the Apple Pencil. These sketches will be used to generate SwiftUI code which is
then presented back to the user as a rendered UI.



Chapter 2

Literature and Technology Survey

2.1 Introduction

We are not the first to notice that there is an opportunity to reduce the time taken to produce
UI code from designs using machine learning. In recent years there have been several papers
demonstrating approaches to this idea, but there are many variations on the details and the
implementations.

Some approaches use hand drawn, paper-based sketches to generate HTML or App Inventor
(MIT, 2022) code, others use high fidelity designs or app screenshots to generate Android code
or a Domain Specific Language (DSL) which is then translated in to platform specific code.

However, few of these approaches utilise iOS, none have attempted SwiftUI and none allow
sketching on the device that’s being targeted (i.e. drawing on an iPad to produce code the
iPad is able to run).

The approaches can be generally split into two broad stages; object detection and classification
(for recognising where UI elements are and what classification they are), and code generation
(where the output of the previous step is translated into code).

Note that there are multiple approaches named “Sketch2Code”.

2.2 Mobile app design

The design for a mobile app is generally built up of UI components provided by the platform.
Apple provides the Human Interface Guidelines (Apple, 2023e) which describe the basic
components and how to use them in a consistent fashion.

Common UI elements include:

• image views

• (text) labels

• text fields

• (toggle) switches

• buttons

5



CHAPTER 2. LITERATURE AND TECHNOLOGY SURVEY 6

• progress bars

• activity indicators

• page control

• picker view

These atomic UI components are grouped in container views or layout hierarchies such as a
vertical or horizontal layout, or a list in order to build up a screen design. It is these basic UI
components and layouts that we will look to recognise.

2.3 Sketch input

The vast majority of papers approaching a similar problem of detecting UI from user sketches
do so using paper-based sketches. The idea being that the user draws the UI using pen
and paper, captures it (by camera) and uploads it to a tool on their computer. Carter and
Hundhausen (2010) found the main mediums used for prototypes are art supplies because of
the speed of creation and ease of creation/use, but they also cite the disadvantages of this
approach as the lack of user interaction, the significant difference from the end result and the
difficulty of digitising.

Most existing approaches to converting paper sketches to code suffer from some of these
disadvantages and almost all require the user to somehow digitise the sketches (Carter and
Hundhausen, 2010). Having to change mediums inevitably introduces a delay as a user must
complete their drawing, take a picture of it and upload it to a system to generate the code. If
the system gets something wrong their options are to either redo the work or edit the code.
We suspect that this also introduces friction for the users as it is an additional step.

Few have deviated from this approach but one that deserves a mention is Doodle2App (Mohian
and Csallner, 2020) who acknowledge that integrating freehand sketching directly into the
system would bridge a gap in software development prototyping. As such, they allow users
to sketch using the computer mouse as the input. While this brings everything together into
one tool and enables users to get instant results, it is hard to see UI designers wanting to
wrangle a mouse for their drawings. Wimmer, Untertrifaller and Grechenig (2020) recognise
this issue of sketch input and feedback and their approach attempts to bring some sense of
real-time feedback to the system by using a computer and USB webcam setup pointed at
a white board. Drawings are sketched and the system detects changes (as long as they are
visible to the webcam). However, this set up is a little cumbersome and they acknowledge
that a graphics tablet and stylus may be a feasible area for future research.

2.4 Approaches for object detection and classification

In this section we cover both object detection (locating an object in an input image) and
object classification (determining what UI component an object is). We have approached
this by examining other authors approaches individually as they often vary in implementation
enough to be of note, sometimes the process of object detection and object classification is
not distinct and are part and parcel of the same process, sometimes they’re not.

Various machine learning approaches for detecting UI elements and their spacial information



CHAPTER 2. LITERATURE AND TECHNOLOGY SURVEY 7

(layouts) have been attempted. Generally, object detection in this context means that when an
image contains one or more elements, the system is able to reason about where those objects
are, what is their position and their width and height.

Conversely, the object classification process consists of a system being presented with an image
where the object to be classified fills the bounds of that image and there is no positional
information as it is the only thing that exists in that image. The system then attempts to
discern a class for the image from a known list of possible classifications.

REMAUI, a tool produced by Nguyen and Csallner (2015), aims to reverse engineer mobile app
(Android) UI from a screenshot or a high fidelity design. They use a combination of Optical
Character Recognition (OCR) via Tesseract, Computer Vision (CV) using OpenCV and merge
the results, then then apply various heuristics to infer user interface elements and their layouts.
This approach seems to handle layouts well, and is one of the few approaches that attempts to
recognise lists, however the system only really deals with limited UI elements (image and text
elements). Similarly Nikam et al. (2021) also aim to interpret screenshots in to code. They
limit the UI elements they are training their model on to a mere four classes (text, text input,
image, button) and use various preprocessing methods to detect components before using a
Convolutional Neural Network (CNN) for classification.

Using deep learning methods, in particular a Convolutional Neural Network (CNN), is a popular
approach especially for object detection. Aşıroğlu et al. (2019) take this approach in order
to detect objects in sketches of web pages and output HTML. They pre-process the input
image (greyscale and Gaussian Blur), before applying morphological transformations so as to
bound objects in the image, crop the detected objects to their bounding box and then pass
this object through the deep learning model to determine what classification a given object is,
i.e. a button. They limit the UI elements they aim to recognise to textboxes (labels in our
context), dropdowns, buttons and checkboxes.

Sketch2code, from Robinson (2019), compares a number of solutions including CV and CNN
to generate single page websites from sketches. They chose to fine tune an Xception model
pretrained on ImageNet. Their results indicate that the CNN based approach performed more
favourably with users, however the CNN is only used for classification. The author applies
various computer vision techniques for object detection.

A paper with a refreshingly different name, pix2code, by Beltramelli (2017) again uses a CNN
approach to process a given image into a set of DSL tokens. Unlike the other authors they
perform unsupervised learning by mapping an input image to a vector of DSL tokens. Liu, Hu
and Shu (2018) mirror this approach for their paper on improving pix2code.

Doodle2App (Mohian and Csallner, 2020) presents a unique solution where object detection is
partly handled by user input giving the application coordinates of the user’s drawing (as they
draw with a mouse) but also by the user having to indicate the end of drawing each individual
UI element by pressing a key (“z”). This allows them to easily identify and separate drawings
to be classified but introduces additional mental load for the user (which goes some way to
losing the simplicity users may be used to from prototyping on paper). Each drawing can then
be passed for classification as it’s completed, with feedback given in a preview pane in quick
succession.

Other authors have discovered that certain types of deep learning models are able to discern
the object location in a larger image as well as the classification. Adefris, Habtie and Taye



CHAPTER 2. LITERATURE AND TECHNOLOGY SURVEY 8

(2022) evaluate three deep CNN based object detection models. Faster RCNN with Inception
V2, SSD MobileNet v2, Faster RCNN with Inception ResNet v2. The benefit of using Faster
RCNN (Faster Region-based Convolutional Neural Network) is that as well as outputting a
class probability for a given component it also outputs a location.

Jain et al. (2019) present another solution (also called Sketch2code) which again uses a CNN,
however they use ResNet and a Feature Pyramid Network to detect objects, determine their
positions and classify them. Similarly Sketch2aia from Baulé et al. (2021) use a model called
YOLOv3, which is from a family of "You only look once" models, designed to detect and
classify objects in a single shot.

2.4.1 You only look once (YOLO)

Of the strategies employed by other authors tacking a similar problem (detecting UI elements
in an image, locating their positions and classifying them) the "you only look once" set of
models stands out as an interesting solution. This particular algorithm is fast - an image can
be provided to the network and the result shows the location and classification for any objects
found in the input. Conversely, other CNN based solutions simply provide classification and
require a separate technique to perform detection.

Redmon et al. (2016) presented the original YOLO, claiming to be the first neural network to
predict bounding boxes and classifications in a single pass. They also demonstrated performance
benefits over other methods such as R-CNN. Since this original paper there have been many
further iterations of YOLO including (but not limited to):

• YOLO

• YOLOv2

• YOLO9000

• YOLOv3

• YOLOv4

• YOLOv5

• YOLOv8

Jiang et al. (2022) compare some of the more popular versions of YOLO and find that
YOLOv5 provides opportunity for enhancements of data via augmentation techniques such
as mosaic, scaling and more. It also offers similar accuracy to YOLOv4 but with improved
performance. Additionally previous versions of YOLO such as YOLOv4 use the Darknet
framework Bochkovskiy (2023), YOLOv5 does not, instead it uses the PyTorch framework
which can in turn be converted to run on Apple devices (Bove, 2023a).

There are examples of YOLOv5 in use in our problem domain, (Altinbas and Serif, 2022)
found that YOLOv5 was able to outperform an SSD (Single-Shot Detector) algorithm when
trained on the same dataset. Abdelhamid, Alotaibi and Mousa (2020) trained YOLOv5 on
hand drawn sketches of UI elements and managed to achieve a classification and detection
accuracy of over 98%. They also suggest that data augmentation techniques could be used to
increase the data usage in training, without increasing the actual amount of training data.



CHAPTER 2. LITERATURE AND TECHNOLOGY SURVEY 9

2.5 Training data

Broadly the approaches for sourcing training data (for training the models referred to in Section
2.4) are grouped in to two main strategies; gathering sketches from volunteers or generating
synthetic data. Each comes with its own trade offs.

While Nguyen and Csallner (2015) mostly used screenshots of apps for their data, they also
manually created sketches of several apps based on screenshots they had taken from the top
100 apps on the App Store. However as their approach does not use any trained models this
data was used for evaluation rather than training and so no labelling or metadata was needed.

Aşıroğlu et al. (2019) used a dataset of 186 samples of hand-drawn website designs, these
images were provided from Microsoft AI Lab (Microsoft, 2019) for their Sketch2Code app.
They then cropped these down in to each UI component, labelled them and used the resulting
dataset to train their CNN.

Adefris, Habtie and Taye (2022) focused on collecting sketches for the most commonly used
UI components, they determined these to be buttons, labels, textboxes, paragraphs, text
areas, checkboxes, radio buttons, etc. In total they selected 14 components and decided on a
common sketched notation to represent each (Figure 2.1), for example an image is represented
as a box with a cross through it. This resulted in a dataset of 562 UI images, each of which
containing numerous (labelled) UI components.

Figure 2.1: Low fidelity sketches of UI components (Adefris, Habtie and Taye, 2022)



CHAPTER 2. LITERATURE AND TECHNOLOGY SURVEY 10

Jain et al. (2019) supports ten UI classes and is trained using a collection of 149 hand drawn
sketches, containing 2001 samples of elements. They note that performance could be improved
by adding more diversity to the dataset.

Baulé et al. (2021) collected a number of screenshots of App Inventor (MIT, 2022) apps
and had volunteers draw sketches of them. This resulted in 279 sketches of screens, each
containing multiple UI elements which were manually labelled to identify the classification and
location. Given their relatively small dataset the authors relied on transfer learning to augment
a pretrained model with their own data.

Mohian and Csallner (2020) chose not to use flat images, instead proposing that the way the
user draws (i.e. the order of the strokes) is valuable information that would be lost in an
image. They leverage some of the dataset from Google’s Quick, Draw! (Ha and Eck, 2017),
which uses vector drawings to train a RNN to generate sketches. However they found there
were relatively few overlapping classes for their use case. The use of a simple input device
was advantageous to them in gathering additional data as they built a simple website to allow
users to sketch and were able to employ Amazon’s Mechanical Turk (Amazon, 2018) to collect
11,500 drawings. They were then able to use transfer learning to augment the pretrained
model from Google with their own data.

Rather than sourcing hand drawn sketches of UI elements Robinson (2019) compiled a dataset
by generating sketches of existing websites. 1,250 images from the dataset were used for
training. The author noted that while the training performance was high the model did not
fare as well with real data as there are unpredictable differences or artefacts in the generated
sketches.

Another study by Beltramelli (2017) also hit the issue of no existing dataset. In their case
they required access to screenshots and their resulting code (the code being written in their
own DSL). To move past this issue they synthesised their own set of data by creating a UI
generator. Overall their training set is 1,500 instances per platform and 250 instances for
testing. Liu, Hu and Shu (2018) also use this dataset. Nikam et al. (2021) also took this
approach, synthesising their own data set by generating small apps with different components
and using screen shots of them as training data.

There have also been efforts to gather large datasets suitable for training detectors. Syn
(Pandian, Suleri and Jarke, 2020) and SynZ (Pandian, Suleri and Jarke, 2021a) are two such
collections, both presented by the same set of authors, they contain large numbers of synthetic
sketches of UI elements with the goal of providing training data for other researchers. Their
initial offering Syn has 125,000 low fidelity sketches which were synthesised from 5,917 hand
drawn sketches by 350 participants gathered from UISketch (Pandian, Suleri and Jarke, 2021b).
They quickly followed up their research with SynZ (Pandian, Suleri and Jarke, 2021a) which
aims to address issues in the original dataset, namely that the sketches were not statistically
similar to real-life UI screens. The SynZ dataset contains 175,377 UI sketches and was
generated from a combination of user sketches and the RICO dataset (Deka et al., 2017).

Approaches relying on gathering hand drawn data from users generally all had relatively low
numbers of sketches, many of these only had samples numbering in the hundreds. This
can lead to detection or classification problems due to simply not enough variety of data
to train a reliable model and as such many of these authors leaned on approaches such as
transfer learning to augment an existing model rather than train one from scratch. Conversely,
approaches relying on synthetic data may have thousands of samples, however the approaches



CHAPTER 2. LITERATURE AND TECHNOLOGY SURVEY 11

using synthetic data found that their trained model did not perform as well as expected when
using non-synthetic data at inference time.

2.6 Approaches for code generation

Code generation is accomplished in a variety of ways in the papers we surveyed. However
there are two main themes. The majority are programmatically generated in that the output
of the detection and classification stage is iterated in some manner in order to output a code
structure. Others take a machine learning approach of some sort, though this is much more
complex.

Nguyen and Csallner (2015) do not share many details on how the export (code generation)
step of REMAUI works, however we assume it is a programmatic method which uses the results
of the previous steps (objects detected and their positions) to build out an android layout.

Aşıroğlu et al. (2019) constructed a “HTML builder” algorithm in order to convert their detected
and classified objects into code. The algorithm itself is relatively straightforward and does not
involved any machine learning components, and uses the coordinates derived from the object
detection phase in order to position the UI elements.

Adefris, Habtie and Taye (2022) have created an algorithm for laying out the UI component
code in a grid system, allowing it to be performed with a relatively simple combination of ‘for‘
loops.

Robinson (2019) uses a recursive algorithm to build a HTML structure based on the bounding
boxes detected in the CV stage.

As with others Sketch2Aia (Baulé et al., 2021) takes a programmatic approach consisting of
several loops to build up a JSON output that can be used directly in the App Inventor (MIT,
2022) tool.

Nikam et al. (2021) also takes this programmatic approach. What sets them apart is that they
choose to output code for use in React Native, a JavaScript cross platform mobile development
framework. This allows them to output android and iOS applications which share a codebase.
Similarly, Jain et al. (2019) output an intermediate JSON blob from their detection and
classification step. This JSON is then used to generate code for iOS, android and web. This
has the advantage of being able to add more UI parsers for more platforms.

The details on Doodle2App’s (Mohian and Csallner, 2020) code generation are fairly scant but
from the demonstration videos the detected UI elements appear to be laid out with absolute
positioning in the preview pane – as in they top left pixel coordinates of the sketched item is
used as the top left pixel coordinate of the output element. There are no attempts at aligning
elements on a row or grid or similar, however the approach does support nesting elements
inside a rectangular container.

Only a few of the approaches take a machine learning approach for the generation of code
from the output of the detection and classification stage.

Beltramelli (2017) is one of the few to use a deep learning for the code generation as well as
the initial object detection and classification. They use a Recurrent Neural Network (RNN),
specifically Long Short-Term Memory (LSTM), to output a sequence of tokens for their own
DSL. The resulting DSL code is then run through their own compiler and output for a given



CHAPTER 2. LITERATURE AND TECHNOLOGY SURVEY 12

platform. The advantage of using their own DSL here is that they can add more compilers in
order to target more platforms and as such they’re able to output code for android, iOS and
web.

Liu, Hu and Shu (2018) built upon the work from Beltramelli (2017) by swapping out LSTM
for Bi-directional LSTM (BLSTM) with the goal of improving code generation output and
higher accuracy. The BLSTM allows for past and future contextual information to be used in
the code generation.

2.7 Native vs. cross-platform development

When developing mobile apps one of the early decisions the developers must make is whether
to build the app using native or cross-platform languages and tools.

2.7.1 Native development

Native development refers to using the languages and tools provided by the platform creators.
For Android this typically refers to Kotlin or Java programming languages and the Android
Studio (Google, 2023a) integrated development environment (IDE). For Apple’s iOS (and
macOS) devices this typically refers to Objective C Or Swift programming languages and the
Xcode IDE. Further to this each platform has multiple options for user interface layout which
include how different sized screens are handled, how rotation works and more - for iOS this
generally means either using UIKit or SwiftUI. UIKit has been a staple of Apple development
for a long time, many of Apple’s own technologies and frameworks are available for use as
UIKit components. SwiftUI however is newer and, as discussed in Section 1.2, is Apple’s latest
UI technology and is the recommended approach for new apps and also for their new headset
the Apple Vision Pro (Apple, 2023d).

The benefits of native development are that the programmers are working with libraries and
software developer kits provided by the platform creators, they can use the latest tooling as
it is released and, as they’re working directly with these tools, they have low computational
overhead and can potentially extract high performance.

The largest downside to native development is that if your app is intended for both android
and iOS app stores then you must create two apps using two sets of programming languages,
tools and layout systems. This inevitably means creating the app for both platforms will
require more resources, which may mean higher cost or more time, than creating the app
for a single platform. Furthermore developers for these specific technologies may be more
expensive, StackOverflow (2023) shows Objective C and Swift in the top 15 of the "top paying
technologies".

2.7.2 Cross-platform development

Cross-platform development refers to building apps that can run on both platforms from a
single codebase in an effort to save time and resources (and potentially reduce cost). There
have been many cross-platform frameworks, some of which have fallen out of favour or are no
longer supported, the current popular options include React Native, Flutter or Xamarin.

The advantage of cross-platform development is very clear, there is potential for developers
to create one codebase and produce apps for both target platforms. They may also use



CHAPTER 2. LITERATURE AND TECHNOLOGY SURVEY 13

programming languages which are more common, and so less expensive to hire developers for,
React Native for instance uses JavaScript which StackOverflow (2023) lists in the bottom 15
of their "top paying technologies".

However, there are potential disadvantages. Often cross-platform tooling only provides access
to features that the tool developers have provided functionality for, and often this means that
functionality must exist on both platforms. Which it doesn’t always.

Generally cross-platform development uses another programming language such as JavaScript,
Dart or C#. Sometimes, as is the case with React Native, the developers may find themselves
also having to modify platform specific code - meaning a developer may find themselves
working in JavaScript, Kotlin (and/or Java) and Swift (and/or Objective C) as well as all of
the tooling that comes with the platforms (Meta, 2023a). This is especially the case if the
developer needs to access a new UI element or feature that the cross-platform tooling doesn’t
yet provide access to.

Cross-platform tooling does not always use the native user interface elements, meaning that
they provide their own version of a label or a button or a switch, etc. This can result in parts
of the UI not feeling quite right due to differences in look and feel or behaviour (Dalmasso
et al., 2013).

Further to this there is generally a performance overhead as something additional is needed to
handle translating to the two platforms. For example, in React Native there is a JavaScript
engine (Meta, 2023b) running to interpret the developer’s JavaScript code and interact with
the native tooling underneath. Authors such as Nawrocki et al. (2021) and Willocx, Vossaert
and Naessens (2015) have measured the performance of native apps and cross-platform apps
and generally the performance of native apps is better, as well as benefiting from faster start
up time and lower memory footprint. The performance benefits of using native development
on iOS were also noted by Delía et al. (2017) who found a remarkable difference compared
with cross-platform approaches.

2.8 Performance evaluation

The successful performance of the various approaches we have referenced here varies greatly
and is often difficult to quantify. Some authors such as Aşıroğlu et al. (2019) only discuss
their training and validation accuracy (96% and 73% respectively) rather than attempting to
measure how their overall approach performs with unseen user generated data.

Nguyen and Csallner (2015) leverage the fact that they are processing screenshots as an input
and measure the similarity in the input image against a screenshot of their output app, and
then take this further by attempting to compare the view hierarchies. They obtain reasonable
results and discuss that their results may be better than measured due to differently sized
transparent areas on bounding boxes of UI elements (with their output trimming much further).
However they do not discuss what effect having unsupported UI elements in the input image
had on the output or the measurements.

Other approaches to performance evaluation include user surveys, Adefris, Habtie and Taye
(2022) used ten sketches and used their system to generate corresponding web pages. They
then randomly selected 24 individuals in the IT industry and asked them to evaluate each of
the generated pages given the input sketches. Though the sample size of individuals and data



CHAPTER 2. LITERATURE AND TECHNOLOGY SURVEY 14

is relatively small they do achieve good results with only two users claiming two designs did
not match. Baulé et al. (2021) also take this same user survey approach with comparable
results to Adefris, Habtie and Taye (2022). Given the highly subjective nature of design and
how a sketch may look when translated in to a more precise output this seems a reasonable
approach.

Robinson (2019) also evaluated performance with a user survey (as well as presenting other
metrics for model performance) and this led them to the conclusion that the performance
was not high enough to be used in production environments. This is further emphasised by
Calò and Russis (2022) who use a similar dataset of artificial sketches and note that while the
accuracy of predicting synthetic sketches is good (∼90%) the performance with real sketches
is significantly lower (∼68-69%).

Beltramelli (2017) reports the error percentage in UI element classification per platform (iOS,
Android and web), with web performing the best at ∼12%, and iOS and Android performing
similarly at 22%. Their conclusion is that performance could be improved further by training a
bigger model on significantly more data for more epochs. Liu, Hu and Shu (2018) show that
the implementation of BLSTM can enhance the performance of pix2code but the same points
remain around training data size.

Mohian and Csallner (2020) used several metrics to evaluate Doodle2App. These included
measuring the average runtime to process and classify a (single) UI element as well as the
average time for detecting an element to converting it to an Android application. Other
metrics included comparisons to a competing product, Teleport (Brie, 2019), both comparing
detection/classification time and classification accuracy (but only for overlapping classes). The
latter however doesn’t seem an entirely fair comparison as the Teleport model is aimed at
detecting hand drawn elements on pen and paper and is being fed entirely computer created
images (drawn by mouse) which will have differences such as no pen/pencil texture, more
artificial lines (the difference between drawing with a mouse vs pencil is likely significant).

2.9 Literature review conclusion

All of the approaches discussed have various limitations that prevent them from being particularly
useful in the real world. Many only support a limited set of UI elements, REMAUI (Nguyen
and Csallner, 2015) being a prominent example as it only really supports binary classification
of elements - label or image.

A key limitation is that many of the approaches ignore key layouts like “lists” (or ‘UITableView‘
in iOS UIKit) but a huge number of apps rely on lists as their root screen to navigate to the
detail of a given item (think of a mail app for email, the root screen is often the list in which
you tap an individual item to navigate to the detail for a given email). From our research only
Nguyen and Csallner (2015) seem to have attempted to handle a list-like layout.

Looking at the various methods used to obtain training data it becomes clear that while it
may not seem that a large number of screenshots or input sketches are needed, those inputs
contain multiple UI elements, for instance Adefris, Habtie and Taye (2022) collected “only”
562 UI images but that resulted in 11,152 UI components.

It is also interesting, if not entirely surprising, to see other authors struggle with the lack of
data. Some turn to generating artificial sketches from finished websites or apps (Robinson,



CHAPTER 2. LITERATURE AND TECHNOLOGY SURVEY 15

2019). While this is a novel solution to hard to source data the resulting model doesn’t
perform as well with real data as it might have if the training dataset contained human drawn
images. Similarly, others generate their own UI and matching code samples (Beltramelli,
2017) but find that this doesn’t provide enough training data to achieve high performance
levels. The symptom of this, as Baulé et al. (2021) found, is that users may have issues with
mis-classification, size or layout of detected elements.

Another popular approach to dealing with the limited amount of training data is to restrict
the number of UI components the systems are looking to recognise. With some authors only
attempting to interpret images and text (presumably any UI element that is not text can then
be recognised as an image or used as training data as an image).

Many solutions attempt to detect objects and classify them separately, typically by determining
a bounding box for each detected element, cropping the image and then classifying that
image. Approaches like Adefris, Habtie and Taye (2022), who use Faster R-CNN for both
detection and classification, offer a clear advantage in terms of reducing steps and ensuring the
classification model is referring to the exact same pixels as is being specified for the bounding
box. Approaches that use YOLO models are an evolution of this approach, offering detection
and classification in a single pass through the model in a faster time than R-CNN approaches.

There are also a variety of code generation methods on display in the papers reviewed, while
many turn to relatively simple algorithms to iterate over the output of the detection/classifica-
tion step, some attempt to use deep learning to find the relationships between visual elements
and the resulting code. Beltramelli (2017) also suggests that Generative Adversarial Networks
(GANs) may be a good fit for generating code from an input image in future research.

Regarding the choice of a programming language to support for code generation output, we
have found that few authors deal with native iOS languages (Swift or Objective C). Most
similar solutions either use cross-platform solutions (Baulé et al., 2021), Android (Nguyen and
Csallner, 2015), or generate non-mobile layouts in HTML (Aşıroğlu et al., 2019). Exploring
iOS code generation is the best choice for potential cost savings (given the cost of developers
in this space (StackOverflow, 2023)), the lower quality of UI in cross-platform (Dalmasso et al.,
2013) and the superior performance that native iOS development offers (Delía et al., 2017).

Surprisingly, almost all of the approaches we have investigated rely on using a paper based
sketch, which must be digitised in some way, as the input. The nature of this process means it
can only generate non-real-time code, as the the user has to upload an image each time they
want to change the output. Only Mohian and Csallner (2020) and Wimmer, Untertrifaller and
Grechenig (2020) present alternatives to this process. One relies on the user drawing using
their mouse with occasional keyboard input to indicate the end of drawing a UI element - when
this key press occurs the system generates a new output and the user can see feedback before
they have finished the entire sketch. The other relies on a cumbersome hardware configuration
and whiteboard which is far from portable or quick to set up. We believe that this is an area
which could be improved upon.



Chapter 3

Requirements

3.1 Introduction

In this chapter we provide an overview of the requirements gathered and their source or
reasoning. The requirements have been gathered from a number of sources, the main one
being the literature review. As part of the literature review we evaluated similar solutions for
generating code from sketches. This highlighted a number of shortcomings of some approaches
as well as identifying new areas to explore.

3.2 Goals

Our literature review in Chapter 2 identified several opportunities for research given the current
state of the art. We cannot attempt to tackle all of these, as such we have chosen the areas
we believe we can have the biggest impact in. The key points we intend to expand upon are
how the sketch is input in to the system, code generation for iOS (in particular SwiftUI) and
combining detection and classification with a YOLO model trained on our own data.

Our high level goal is to attempt to improve on the prototyping phase of mobile app development.
This phase is often done using pen and paper and we aim to replicate the speed, portability
and flexibility of this technique using a digital alternative. We intend to do this by creating an
app that allows a user to draw a sketch of a UI and the app will generate the code for the user
to continue using for further development. While many authors investigating this area took
the route of using an image of a paper sketch as input we intend to attempt to use sketches
being drawn by the user, allowing for faster feedback and reducing the manual steps needed to
use the system.

3.3 Detailed requirements

We have used MoSCoW analysis (Dawson, 2015, p.121) to prioritise the requirements according
to:

• Must have - the project must include this

• Should have - the project should include this

16



CHAPTER 3. REQUIREMENTS 17

• Could have - the project could include this

• Won’t have - the project won’t have this in this version but this could be considered for
a future version

RQ1: The user must be able to draw on the device

Other approaches generally capture a pen and paper sketch using a camera and then upload
the result to a computer for processing (as discussed in section 2.3). This is a cumbersome
process as noted by Carter and Hundhausen (2010). Instead, our goal is to allow the user to
draw directly on their device.

RQ2: The app must generate SwiftUI code

In the literature review we noted that very few approaches output code for Apple devices (see
Section 2.6), and more specifically that no other approaches have attempted to output SwiftUI
(Section 1.2). This requirement is important as Apple’s recommended approach to developing
apps on their platforms is now Swift and SwiftUI (as discussed in Section 2.7.1), so this choice
will ensure the tool outputs code in the current industry standard language. It is also clear
that the native languages are more expensive to implement so it makes sense to automate this
area first.

RQ3: The user should be able to draw with a stylus

The experience should remain as close to drawing with pen and paper as possible, as Carter
and Hundhausen (2010) observed this was the preferred method for prototyping. (Mohian
and Csallner, 2020) noted that a potential future area of research would be to build a system
which used a graphics tablet and stylus.

RQ4: The app should show its output as the user draws

The user needs to know the app has correctly interpreted their drawings whilst using it. Most
other approaches we reviewed perform their output generation in an asynchronous manner.
Capturing the user’s drawings on their local device gives us an opportunity to attempt to
recognise sketches in real time, if we can achieve a good level of performance. Most other
approaches don’t offer this opportunity as they require digitising a sketch after it is completed,
except for Mohian and Csallner (2020) who also employs this strategy.

RQ5: Code generation should happen automatically as the user draws, it should
not need user intervention

Mohian and Csallner (2020) had the closest approach to ours as they tried to move the whole
prototyping and code generation process on to a single device. However, they required the
user to indicate to the system that the user had completed drawing each element. While this
makes it easier for the system to identify distinct drawings to use for detection it makes the
drawing process less natural. (Mohian and Csallner, 2020) used a system which pointed a
camera at a whiteboard, allowing for a more natural drawing experience but their system lacks
the ease and portability of our approach and we intend to address some of their approach’s
limitations in this project. From our research in Chapter 2 this seems to be an under explored
area but it will significantly enhance the user experience so will be a key focus of this project.

RQ6: The user should be able to draw, see results and run the generated code
on the same device



CHAPTER 3. REQUIREMENTS 18

One of the disadvantages of other similar systems is that the user must draw their sketch on
pen and paper, capture it and upload it to a computer in order to produce generated code
for them to use. Our goal is to streamline this process to replicate the simplicity of pen and
paper. One way to close this gap in the software development process is to be able to handle
it all on a single device.

RQ7: The user should be able to export the generated code

The value of generating code is that it potentially gives developers a head start, however the
user of the app may not be a developer so it should be possible for the user to export the code
for use on another device.

RQ8: The app could work "offline"

The prototyping phase can happen anywhere and users may be in a coffee shop or a meeting
room with clients or other locations. Pen and paper works in all of these environments and
doesn’t need an internet connection. Ideally, we are aiming to match or improve upon the pen
and paper experience, and being able to work without an internet connection is something we
can potentially replicate.

RQ9: The app will not consider complex UI designs

The project will not consider the generation of code for complex UI designs that require
advanced features such as animations, navigation or custom views. The focus will be on
generating code for basic UI designs such as labels, buttons, and text fields for a single screen
at a time.

3.4 Conclusion

These requirements were created to address the limitations of the existing approaches explored
during the literature and technology survey (Chapter 2) and will form the basis of our design
and implementation in the following chapters.



Chapter 4

Design

The chosen approach is to use the Apple iPad and Apple Pencil (a stylus) as an input device.
This allows us to fulfil multiple requirements RQ1, RQ3 and RQ6, whilst other devices such
as a laptop would only fulfil some of these requirements. It also allows us to deploy on a
portable device which aligns with our broad goal to replicate the advantages of pen and paper.
If we can deploy the entire app (drawing, machine learning model, etc) on an iPad and not
rely on a server (i.e. if the machine learning model were to be cloud based) then this allows
for a level of portability other similar systems discussed in Chapter 2 could not reach. If our
model can run fast enough it will also allow us the opportunity to give feedback to the user as
they sketch, something very few other solutions have achieved. The iPad also allows running
SwiftUI code in its Swift Playgrounds app, which we may be able to leverage to compile our
own generated code. Furthermore, Apple platforms are some of the more expensive to develop
mobile apps for (StackOverflow, 2023) so it makes sense to target time (and therefore cost)
savings in this area. Finally, from our research (Chapter 2) no other author has attempted this
approach entirely on an Apple device.

In our literature and technology survey we discovered that synthetic data sets used to train
a model do not perform as well as may be desired when used with real user data (Section
2.5). Given our intention to capture sketches on a device no other solution seems to be using
we may expect to see a similar issue if we were to use a synthetic data set, such as SynZ
Pandian, Suleri and Jarke (2021a). There would also likely be issues if we were to use a
dataset consisting of photos of paper-based sketches. For example, such a dataset may have
artefacts we are unlikely to see when using an Apple Pencil including camera related issues like
angle to the paper, orientation and lighting (Abdelhamid, Alotaibi and Mousa, 2020), perhaps
even details in the pencil drawing itself such as the texture of the line made by graphite (a
feature that Apple Pencil drawings will lack). While it may be that in preprocessing these
datasets we could render much of these differences moot there could be parallels with Syn
(Pandian, Suleri and Jarke, 2020) where the dataset they generated ended up more different
to the target than desired. In addition, machine learning algorithms are very good at learning
imperceivable details and bias from a dataset and there may be differences we are unable to
detect and correct/remove.

As such we have elected to gather our own dataset on device, in an attempt to get the best
model performance possible. While acknowledging we will likely have to deal with a smaller
dataset and make use of approaches such as transfer learning. This also means we do not
need to address issues like identifying the paper in an image and removing the background or

19



CHAPTER 4. DESIGN 20

overlapping artefacts in the image (i.e. a pen left on top of the paper or other objects).

This project begins with no existing data on which to build a model so it touches on every
stage of the data science pipeline. The pipeline has been described in several ways but all
contain similar components. One described by Biswas, Wardat and Rajan (2022) is shown in
Figure 4.1.

Figure 4.1: Data science pipeline overview (Biswas, Wardat and Rajan, 2022)

We are building three distinct components:

• Data capture tool

• Machine learning model

• Drawing app

These components align to different stages of the data science pipeline. The data capture tool
will cover data acquisition as well as the data preparation. In training the machine learning
model we will cover modelling, training and evaluation. Finally the data capture app will
handle the prediction phase.

The following sections discuss our design for these components in more detail.

4.1 Data capture tool

4.1.1 Data acquisition and preparation

Most other authors gathered drawings on paper and then digitized them to use for training.
These images were sourced either from other projects, as with Aşıroğlu et al. (2019), or
gathered by the authors from volunteers as with Baulé et al. (2021).

Some authors did capture drawings digitally, such as Mohian and Csallner (2020) who leveraged
data gathered by Google (Ha and Eck, 2017) using an online game as well as building their
own online tool to gather additional digital drawings.

To capture sketches from users on device we will build an iPadOS app which allows the user
to draw, using an Apple Pencil, on a given canvas area. To give users some idea of what to
draw we will provide an example of an iPhone app UI from an existing app on the same screen
and instruct them to attempt to make a “low fidelity” copy in their drawing. This is similar to
Baulé et al. (2021) who showed screenshots of apps to their users to draw for training data.

As the user draws, our app will capture their sketch data. Once they have finished drawing the
app will have a mode for the user or the instructor (the author) to label each UI component
the user has drawn.

An image of the user drawing and the labelled data – consisting of bounding box coordinates,
classification types and a cropped image of that element – are uploaded to cloud storage for
later manipulation.



CHAPTER 4. DESIGN 21

Given our unique input device we cannot employ tools like Mechanical Turk (Amazon, 2018)
to gather additional images.

4.2 Training the model

4.2.1 Modeling

At this stage we have labelled user data (images of sketches with a set of bounding boxes and
classifications for each UI element) in a data store. Given we are able to collect labelled data
it makes sense to use supervised learning in order to create a model.

We have bounding box information from the user labelling/data capture tool which we could
use to split up the data (i.e. crop the full size image to only be an image of the element in
question) we will have situations where elements overlap. This is just the nature of sketching -
humans are imprecise and the user is drawing a relatively small item in a relatively tight space
- and to some extent this is the nature of UI design - some elements may be containers or
overlap. Many of the authors in the literature review had to use a variety of strategies to
attempt to detect and segment individual UI elements. For instance Aşıroğlu et al. (2019)
greyscale and Gaussian blur the input image, apply morphological transformations and crop
the detected objects to their bounding box to create something to pass to their deep learning
model for classification. Others, like Baulé et al. (2021), use YOLO (Section 2.4.1) since
algorithms of this type will detect and classify anything found in a given image. Of the
approaches researched, the latter - which uses a YOLO algorithm - is most efficient (less
pre-processing) and may deal with overlapping elements better, so we have elected to use
YOLOv5 for detection and classification.

4.2.2 Training

We are collecting and building our own dataset so expect to have a limited amount of data.
To manage this we will use transfer learning to augment an appropriately selected, pre-existing
object detection model with our data.

To train our model we expect to need to experiment with various hyperparameters to achieve
a good result. Altinbas and Serif (2022) suggest that data augmentation can be used to
increase the amount of data that can be used while training. We intend to experiment with
data augmentation techniques during training.

4.2.3 Evaluation

A small subset of our captured data will be set aside for evaluation. This data will not have
been seen by the model (as it was not used in training) and as it is pre-labelled we can
determine how successful at detection and classification our model is. This will give us some
sense of how well the model is able to perform with unseen data. Though we acknowledge
this will reduce our training data set size this is an essential step to be able to allow us to
compare model versions.



CHAPTER 4. DESIGN 22

4.3 Drawing app

4.3.1 Prediction

To evaluate the success of our model with a larger variety of data we will need to deploy it in
our iPad app and test it with users. To successfully run the model on device in a reasonable
time we ideally want to have our code run on the Apple Neural Engine (Orhon et al., 2022),
as opposed to the CPU, as this is a specialised element of the Apple Silicon system-on-a-chip
(SoC) which is designed for running ML models. However, to do this we will need to convert
the model we trained in to a supported format but fortunately Apple provide a set of tools
to accomplish this. The Apple Core ML Tools (Bove, 2023b) allow developers to convert
models from PyTorch, Tensorflow, scikit-learn and several other libraries and frameworks. This
reinforces our choice of using YOLOv5 to train our model as it is PyTorch based unlike some
other YOLO frameworks such as Darknet (Bochkovskiy, 2023) which is C based (Solawetz,
2020).

4.3.2 Visualisation

The detected elements produced by the model will be processed by the app and presented to
the user in a preview panel alongside the drawing panel. This gives the user immediate (or
close to) feedback and allows them to visually see if the model has correctly interpreted their
drawing.

We will also provide a view to show the code which has been generated as a result of the user
drawing, as well as a way to export this to other coding tools to allow for compilation and
modification.



Chapter 5

Implementation and Testing

In this chapter we discuss the detailed implementation of the system described in Chapter 4.
Each component underwent various revisions as it was developed to ensure it meets the goals
and requirements in Chapter 3.

The implementation consists of three distinct parts: the data capture tool, the model training
and the drawing app.

• Data capture tool - this component is an iPad app which allows users to copy a provided
image as a sketch. This sketch is stored as part of our training data.

• Model training - this component consists of Python code which manipulates our dataset
and trains a machine learning model for detecting and classifying sketches of UI elements.

• Drawing app - the main output which combines elements of the other two components.
It is an iPad app which allows users to sketch a UI which is passed through the machine
learning model to detect and classify each element before processing them and displaying
a preview along with generated SwiftUI code.

5.1 Data capture tool

The purpose of the data capture tool is to record, label and store user sketches to use this
data for training later. The tool requires a significant engineering effort and includes a front-
end iPadOS application written in Swift and SwiftUI as well as a back-end service created
on Google’s Firebase (Google, 2023d). Figure 5.1 shows the high level architecture of the
application.

The app itself starts with a user consent screen, if users agree to the terms presented then
they are taken to the main screen (Figure 5.2). Here users are presented with a drawing panel
on the left and a screenshot of an existing iPhone app on the right. The user’s goal when
using the app is to sketch their interpretation of a low fidelity version of the screenshot they
are being shown (on the right of Figure 5.2). This process was inspired by Baulé et al. (2021),
who gathered screenshots of apps and had volunteers draw paper sketches of them. Once the
sketch is complete the tools along the top left of the screen are used to labelling the drawing
data. When all UI elements have been labelled the user presses close and is prompted to
save their work, at this point the users consent form, sketch image and associated data are
uploaded to Firebase for storage.

23



CHAPTER 5. IMPLEMENTATION AND TESTING 24

Figure 5.1: The architecture of the data capture tool

5.1.1 User consent

The data capture tool will record and store user sketches for training our model, so we must
inform users of our intent to do this, what we will use the data for and request their permission
to store the data they provide. The first screen the users see explains the purpose of the app
and asks them to accept the terms and conditions of use, as shown in Figure 5.3. They then
have the option to fill in a name for us to refer to them by (they are free to use pseudonyms
or leave the field empty), and must consent to us collecting their data. If they disagree to us
storing their data they cannot continue to the drawing screen and the form resets ready to be
completed by another user). They must also agree or disagree to a debrief and are asked if
they would like to participate in the evaluation or not. The only required field that prevents a
user progressing to the drawing screen is the acceptance of the terms and conditions.

The data captured here is held in memory on the device, it is then uploaded and stored in
Firebase if and when the user saves a sketch.

For ease of tracking (for the author) this screen shows a count of the current number of
sketches stored in Firebase at the bottom left.

5.1.2 Example apps

To give users inspiration for which UI elements to draw and in what order or layout we show
them an image of an existing app. These images were gathered from manual screenshots of
apps featured in the Apple App Store charts or apps that we had access to the source code
for. Overall just under two hundred screenshots were collected and uploaded to a Firebase
Cloud Storage (Google, 2023b).

The images selected were chosen for their common UI elements or app design patterns like login
or registration screens. The screens were all captured without any user data being displayed or
entered, i.e. on a registration screen all fields were left empty.

Whenever the drawing screen is loaded the app fetches the listing of files from Firebase, selects
a random file and downloads it. This image is then presented to the user on the preview panel
of the drawing screen.



CHAPTER 5. IMPLEMENTATION AND TESTING 25

Figure 5.2: An annotated screenshot of the data capture tool user interface

5.1.3 Drawing

To enable us to capture data to use for training we had to create a tool to capture sketch
information from potential users and volunteers. This tool needed to use the same drawing
tools that the final application would use in order to ensure the model was trained on similar
data with the same set of details the final tool uses - for instance if our data capture tool used
thicker or rougher lines than our final tool, then we may see the confidence of results affected,
or perhaps no results. This meant the drawing panel we created was to be used both for the
data capture tool and the final drawing application.

Apple provides a View for UIKit called PKCanvasView for interacting with the Apple Pencil
and it provides much of the drawing support. However, we used SwiftUI to create the app
UI because Apple is pushing SwiftUI as being the best choice for app development on their
platforms (as discussed in Section 2.7.1). Since PKCanvasView is not supported out of the box
in SwiftUI, we created a wrapper called CanvasView to allow the app to use it as part of the
SwiftUI interface. The resulting View gives the user the ability to draw and erase with the
Apple Pencil and gives the app callbacks for every stroke (or line) the user makes.

5.1.4 Labelling

We are using a supervised learning approach and so, as discussed in 4.1.1, we must label the
user data to train our model with the various classes we need to detect. To do this we provide
a labelling mode which displays bounding boxes to the user over the top of their sketch. The



CHAPTER 5. IMPLEMENTATION AND TESTING 26

Figure 5.3: User consent screen

bounding boxes are initially created from the user stroke data captured by our drawing view -
we have the x,y coordinates, width and height of each stroke.

Creating bounding boxes

Given any UI element drawn by the user may be made up of multiple strokes we attempt to
group strokes together to try to guess what might be a UI element which needs classification.
We achieve this by creating a bounding box for each stroke, then iterating over the list of boxes
checking for any overlaps with any other boxes. When an overlap is found the two overlapping
boxes are merged. The final list of bounding boxes contains no overlapping elements and is
then displayed to the user.

Our initial bounding boxes often give the user a good starting point for labelling elements
but it does not always find the correct grouping or bounds. Figure 5.4 shows the initially
generated bounding boxes (Figure 5.5a) and the user corrected and labelled bounding boxes
(Figure 5.5b). If these images are closely inspected we can see some differences, specifically
the text "Recommended for you" in the centre of both images. It’s clear to the observer that
the sentence should be a single box on the UI so that it may be labelled as a single element
for training.

However, when we calculated the bounding boxes based on strokes and their overlap the words
themselves did not overlap. In some cases letters in a word did not overlap resulting in several
bounding boxes. To enable the user to label or classify this text as a single UI element we



CHAPTER 5. IMPLEMENTATION AND TESTING 27

(a) Automatically generated bounding boxes (b) User labelled bounding boxes

Figure 5.4: Generated bounding boxes versus user confirmed bounding boxes

provide a (lasso) tool that allows the user to group select bounding boxes and combine them.
This can be seen in 5.5.

(a) Using the lasso tool to group bounding boxes
together

(b) The resulting bounding box

Figure 5.5: Combining bounding boxes

Users could also find that due to their drawings inadvertently overlapping they have a starting
bounding box that contains more that one separate element. We implemented a "split"
function that the user can select which breaks a given bounding box down into its component
strokes, with a single bounding box per stroke. The user can then use the lasso tool to group
together only the strokes that are needed for each desired bounding box. Crucially, the lasso
tool only selects "unclassified" bounding boxes, this means that a user can easily group strokes
in to a bounding box, label it and then work on grouping the remaining strokes (which may
overlap or be extremely close to the previously created box). This functionality is shown in
Figure 5.6. Where a user needs to split up the tab bar and the images at the bottom of the
screen, they simply tap the bounding box that needs operating on and a list of options are
presented (Figure 5.6a). At the bottom of this list is the option to "Split", after selecting
this the bounding boxes are reduced to their most granular to allow the user greater flexibility
(Figure 5.6b).



CHAPTER 5. IMPLEMENTATION AND TESTING 28

(a) Wrongly grouped tab bar and the user options
(b) The user can group the strokes for an image
together and label that element

Figure 5.6: Splitting bounding boxes

In addition to the grouping and splitting tools provided to users, the main function required of
them is to label the UI elements in their sketch. When the user is satisfied a bounding box is
correct they simply tap on it to bring up the list of options, this list (shown in Figure 5.6a and
5.7) contains an entry for any UI element we support (and some we might like to support) as
well as the split and ignore functions (the ignore function simply excludes a bounding box from
use). Once one of the labels has been selected the bounding box changes colour to green and
displays its classification inside it (this can be seen on the image in the bottom left of Figure
5.7). This process is repeated until the user has labelled all the bounding boxes.

Figure 5.7: Bounding box labelling options



CHAPTER 5. IMPLEMENTATION AND TESTING 29

5.1.5 Post processing and storing

When the sketch is complete and all data has been sufficiently grouped and labelled we save
the captured data for processing and training the model at a later time.

The app creates an image of the drawing area, capturing the user’s sketch (Figure 5.8a), and
uses the final list of bounding boxes to also create cropped images of a UI element defined
by a bounding box. The complete image and individual images are uploaded to our Firebase
Cloud Store. The raw data of the bounding boxes (which includes x, y, width, height and label)
is stored along with the uploaded image paths (to link bounding boxes to their respective
images) and the user consent form are stored in a Firebase Realtime Database (Figure 5.8c).
To separate the data it is stored in a tree-like structure with the date at the root node, followed
by a unique identifier for each sketch created on that date.

(a) The sketched image (b) The labelled image

(c) The structure of data stored in
the Firebase Realtime Database

Figure 5.8: An image drawn by a user, labelled and stored

5.2 Training the model

To train the model to detect and classify UI elements in a given image there are several stages
we needed to move through. Each of the steps described have been created in a set of Jupyter
Notebooks:

1. fetch_firebase_data−yolo.ipynb - includes fetching data, pre-processing, training and
validation

2. yolo−to−coreml.ipynb - converts the model we created to CoreML



CHAPTER 5. IMPLEMENTATION AND TESTING 30

5.2.1 Data

From our data capture process we gathered a total of 145 drawings from 10 users. These
drawings break down as shown in Table 5.1.

Class Count

button 389
image 274
label 680

tabBar 57
navigationBar 46

segmentedControl 7
textField 46

switchButton 20

Table 5.1: The number of training data examples for each UI element class

5.2.2 Fetching and pre-processing

The first step is to retrieve our data from Firebase. Our notebook authenticates with Firebase,
then iterates through the Realtime Database tree.

For each node (which represents a single screen sketch) we retrieve the coordinates of the
bounding boxes and their classifications. These coordinates are originally created on the iPad
in the coordinate system used by the device, where the origin is the top left of the screen and
for each box the x and y represent the top left corner of the box, and all values are absolute
values. The YOLO algorithm however expects a relative coordinate space; x and y represent
the centre of a box and all values are relative between 0 and 1 (with 1 being the full height or
width). So as part of our data retrieval we convert the coordinate from the iPad space to the
YOLO coordinate space.

We then programmatically create a text file for each sketch containing a row for every bounding
box, consisting of the classification (as a number) and the converted coordinate information.
A sample of this can be seen in Figure 5.9.

Along with each text file the corresponding sketch image is downloaded. It is stored in Firebase
Cloud Store as a .png file as the raw sketch image is comprised of line drawings on a transparent
background. For training we must remove the transparency from this image so it creates a
white image with the same dimensions, copies the sketch information over the top and then
saves the resulting image as a . jpg file.

Exceptions to the rule

For some UI elements we were able to apply some additional pre-processing in an attempt
to normalise some of the data. When converting bounding boxes specified by users in the
iPad screen coordinate space to YOLO coordinate space there are some elements where we
already know the expected size or position, so we took this opportunity to override them here.
Specifically the navigationBar and tabBar will always be the full width of the screen (and so we
replace width with 1). In addition, we know that a navigationBar is only ever positioned at the
very top of the screen, so we convert the centre Y position (taking in to account the height)



CHAPTER 5. IMPLEMENTATION AND TESTING 31

Classification Centre X Centre Y Width Height

1 0.553610503 0.353225806 0.568927789 0.252688172
2 0.507658643 0.559139784 0.595185995 0.047311827
2 0.515317286 0.681182795 0.557986870 0.091397849
0 0.497811816 0.890322580 0.671772428 0.096774193

Figure 5.9: The bounding box data (top) for the sample sketch (bottom)

to sit against the top bounds of the image. Similarly, a tabBar only occurs at the bottom of
the screen and so we recalculate the Y coordinate to position it at the bottom.

5.2.3 Training

With the training data downloaded and correctly formatted we split our data amongst three
folders; train, validation, test.

First we shuffled the data (to avoid always training our model with the same data in the same
order, or always putting the same data in to the same folders) and then we allocated them
between the three folders with the highest amount allocated to ’train’.

Given our relatively small dataset, and the success seen by other authors such as Baulé et al.
(2021), we have chosen to take advantage of transfer learning. This allows us to take an
existing model, freeze some of the weights in the existing layers and only train the remaining
layers at the end of the model with our new data. Only changing these last layers allows us
to swap out the final detection layer, where classification occurs, with our own layer which
contains only our classes (and not the classes the original model was created to detect).
Initially we focused on freezing the backbone of the network and only training the head, for
the YOLOv5s model this was the first 10 layers.

YOLOv5 is distributed with several model sizes all trained on the COCO dataset (Lin et al.,
2014). As we were intending to run on an iPad, which could be considered a low powered
device and we would like fast feedback from the model, we elected to use yolov5s as our
starting point because it’s a relatively small model at 7.2 million parameters, Jocher (2023).

Later in the project we experimented with freezing fewer layers and data augmentation with
the goal of improving accuracy.



CHAPTER 5. IMPLEMENTATION AND TESTING 32

Data augmentation

As our dataset is comparatively small one technique to artificially increase the amount of
training samples is to employ data augmentation. There are multiple strategies for data
augmentation but the approaches that seemed to fit our purposes best were mixup, mosaic
and copy-paste.

Mosaic data augmentation

This technique creates new training data by stitching together four different images from the
training dataset at different scales. The bounding boxes from the input images are carried
across, scaled and re-positioned to account for the new scale and location. A sample of this
new training data can be seen in Figure 5.10.

There are several advantages to this approach including; low computational overhead due to
only rearranging existing data, and aiding multi-scale detection as objects are being introduced
at additional scales.

Figure 5.10: Example of our training data with mosaic data augmentation applied

Mixup data augmentation

In mixup, two images are superimposed with different coefficient ratios and then the associated
labels adjusted and superimposed (Zhang et al., 2017). For each pair of input images mixup
creates a pair of mixed up images. It can also lead to overlapping features and noisy input
images. However, it also has a low computational overhead and for our purposes may help
create new data containing UI elements which are close together or overlapping - which will
often occur in real use. Because elements can become combined their labels become "soft
labels" which are a blend of the two.

A sample of this approach, when combined with mosaic, can be seen in Figure 5.10.



CHAPTER 5. IMPLEMENTATION AND TESTING 33

Figure 5.11: Example of our training data with mosaic and mixup data augmentation applied

Copy-paste data augmentation

Copy-paste data augmentation is where a region of a source image is selected and copied into
another image. This may include some or all of a labelled element, and if so that labelling is
carried across or adjusted if it is only part of the labelled element. This has the advantage of
training the model to deal with occlusion (as there may be only part of an element) as well as
introducing items in more contexts than may occur in the original training data.

Training results

The results of these experiments can be seen in the F1 curves shown in Figure 5.12, we chose
to use F1 graphs for comparison of the accuracy of various experiments as it offers a value
computed using the precision and recall. Each graph shows the overall F1 score (bold blue
line) and the key states the score and what level of confidence achieved (for instance in Figure
5.12a "all classes 0.71 at 0.429" indicates the F1 score of 0.71 was achieved at a confidence
of 0.429).

We can see in Figure 5.12a that even without additional data augmentation (mosaic augmen-
tation is used in all of our experiments) and with a relatively small amount of data we can
achieve some reasonable results. However, this was more of a starting point and we then
tweaked various hyperparameters to achieve better precision and recall.

In experiment 22 (Figure 5.12b) we added a high percentage (0.8) of mixup data augmentation
which actually resulted in the same F1 score but at a worse precision. Both experiment 21 and
22 were trained over 300 epochs and it may be that by introducing mixup augmentation we
need more iterations to achieve a good result or our value was too high and this led to noisy
data to our detriment.

We put this to the test in experiment 29 (Figure 5.12c) by keeping mixup augmentation high,
also introducing some copy-paste data augmentation and increasing the number of epochs to
600. This resulted in a slightly higher confidence but a slightly lower F1 score overall.



CHAPTER 5. IMPLEMENTATION AND TESTING 34

In experiment 32 (Figure 5.12d) we removed the copy-paste augmentation (our theory being
that the effect of copy-paste is likely negligible if we have a high value for mixup as they are
such similar techniques), kept a high percentage of mixup augmentation and chose to only
freeze 8 layers instead of 10. Because we decided to freeze fewer layers we anticipated needing
to train for longer (as we are forcing the model to learn more values than with 10 frozen layers)
and so we ran it for 1000 epochs. This resulted in a higher F1 score and a higher confidence
than our initial experiment (Figure 5.12a).

For experiment 34 (Figure 5.12e) we kept the number of frozen layers at 8, reduced our mixup
value significantly (down to 0.5) and added a very small value for copy-paste. This was partially
in an attempt to verify our earlier thought that too high a mixup value may introduce too
much noise in the data. As with previous attempts with smaller numbers of frozen layers we
trained for 1000 epochs. The results show that we kept the same F1 score as our previous
experiment but achieved a higher level of confidence.

To see plainly the effect of freezing more or fewer layers we re-ran experiment 34 but with
the original 10 frozen layers (which was originally chosen as this is the whole backbone of the
model). With all other parameters kept the same the experiment resulted in the same F1 score
as the previous experiment but with a slightly lower confidence (Figure 5.12f). This is to be
expected since we trained fewer layers of our model.

Our best performing experiment was experiment 34, it shares the highest F1 score of our
experiments but it has a higher confidence level which means we should be able to see the
same level of performance when in use but with a higher confidence threshold. This would
indicate that it is a slightly more reliable model overall.

There are trends in Figure 5.12e that apply to all of our experiments. For our individual class
performance we can see simply from the shape of the lines that some classes clearly have more
data to train on than others. Some lines are contain long straight segments that have quite
angular bends (see textField and navigationBar in Figure 5.12e), indicating a class with less
examples. Other lines such as button or label show much more granularity, or more frequent
changes of direction at smaller intervals, indicating there is more training data causing the
values to adjust. Conversely the line indicating the segmentedControl class is almost impossible
to find on any of the graphs in Figure 5.12, there is simply not enough data here to train on
(in fact there are only 7 examples of a segmentedControl in the training data, see Table 5.1).

5.2.4 Converting to CoreML

The file format required to run a model on an iOS or iPadOS device is a CoreML Package
( .mlpackage). Apple provide documentation on how to convert a PyTorch model to their
format (Bove, 2023a), and the authors of YOLOv5 also provide a python script which converts
a given YOLOv5 model to CoreML, however there are a couple of problems.

The first is that the code provided by the YOLOv5 authors produces a .mlmodel file, rather
than the newer .mlpackage. While this is not a significant problem, the other problem is more
significant so we addressed this as part of that solution.

The second, more significant issue is that the CoreML model exported from YOLOv5 does
not include a Non-Maximum Suppression (NMS) layer. Whether this was an oversight or the
intention was that users would implement NMS separately is unknown.



CHAPTER 5. IMPLEMENTATION AND TESTING 35

(a) Experiment 21 (b) Experiment 22

(c) Experiment 29 (d) Experiment 32

(e) Experiment 34 (f) Experiment 35

Figure 5.12: Experiment results

5.2.5 Non-maximum suppression (NMS)

Many computer vision tasks rely on NMS algorithms (Neubeck and Gool, 2006) for filtering
out multiple detections. Object detection algorithms, like YOLOv5 and YOLO9000, use anchor
boxes (Redmon and Farhadi, 2017) which is a concept introduced by Ren et al. (2016) for
Faster R-CNN. These anchor boxes are predefined shapes which represent possible different
sizes of objects, this is preferable over a single sized bounding box as objects can have varying
size and shape, anchor boxes accommodate this, and is also a faster way to produce region
proposals for detection. However, this also means that a single occurrence of an object will
have several matching boxes and there may not be a good fit for all examples.

This approach also means there are a fixed number of possible boxes which can be detected
in an image. The original YOLO approach used grid cell proposals for detections and this
produces a fixed 98 detection boxes per input image (Redmon et al., 2016), YOLO9000 uses
an anchor system and produces over a thousand (Redmon and Farhadi, 2017).



CHAPTER 5. IMPLEMENTATION AND TESTING 36

No matter the number of boxes the same problem remains so we needed to intelligently
determine which boxes (if any) are most likely to be correct in order for the rest of our app to
act on that information. This is often achieved using non-maximum suppression and Figure
5.13 shows an example of this.

Figure 5.13: Example object detection output, and after applying NMS (Prakash, 2021)

While we could have implemented NMS in the mobile code base in native Swift code, this
would require processing over a thousand possible detections on the iPad CPU. This would
likely be a relatively slow process and would potentially endanger our performance goals of
near real-time detection of elements - especially as all user input is also handled on the CPU.
Instead we chose to create our own version of the YOLOv5 export script which adds an NMS
layer to the resulting CoreML model. One benefit of this is that the code is run on the iPad’s
GPU which is much more suited to this task and should perform more rapidly than the CPU.

This involved creating a non-maximum suppression model which takes the output of our trained
model as its input, and itself outputs confidence and coordinates. We then built a pipeline of
the two models, which outputs the classification, confidence and coordinates above a given
threshold, instead of the full result of possible detections of every possible shape.

The bonus to creating our own version of the output code was that we were also able to
modify it to output a .mlpackage file and keep pace with Apple’s CoreML requirements.

The final pipeline containing both our trained model and the NMS model is shown in Figure
B.1.

5.3 Drawing app

The drawing app itself was intended to have a similar UI to the data capture app to allow
us to reuse much of the user interface code (in particular the drawing code). Although we
refer to the drawing app and data capture app as separate apps throughout this document we
built both within the same app. This approach allows us to continue to gather more training
data while also allowing testing of the drawing and generation features. To access the drawing
screens we added a "Draw" button to the user consent screen (5.1.1). The user is presented
with a drawing area and a preview area (which is similar in layout to Figure 5.2 but with a
new preview panel on the right hand side), as they draw the preview area is populated with
the results of our trained model.

Sharing code with the training app screens also allows us to bringing some of the debug tools
(i.e. the eye icon at the top left allows us to see the raw model output, without post processing,



CHAPTER 5. IMPLEMENTATION AND TESTING 37

(a) The drawing app in "UI preview" mode

(b) The drawing app in "code preview" mode

Figure 5.14: The drawing app layout

on top of our drawing) we created for data capture in to the drawing app. Some of our user
interview participants found this particularly useful (6.3.1).

The drawing app has two modes controlled by buttons at the top left of the screen: UI
preview mode (Figure 5.14a) and code preview mode (Figure 5.14b). In either mode, as
the user draws their desired UI on the left hand panel the right hand panel automatically
updates with the results of our trained model (either as UI elements being drawn or by
code being generated), this happens in near real-time (our model generates results in around
a tenth of a second). A video demonstration of the app is available on YouTube https:
//www.youtube.com/watch?v=SKGdZ3H9eyY (Leivers, 2023b).

5.3.1 Making predictions

As our app’s main input is the user drawing using the Apple Pencil, it is even more important
than in other apps that we maintain a responsive user experience. If the user is attempting to
draw and the device resources are overloaded the user will see a lag in their drawing with the
Pencil/user moving further ahead of the rendered line as the device struggles to catch up with
the drawing.

https://www.youtube.com/watch?v=SKGdZ3H9eyY
https://www.youtube.com/watch?v=SKGdZ3H9eyY


CHAPTER 5. IMPLEMENTATION AND TESTING 38

To prevent this happening we maintain a low memory footprint and move intensive work off to
background threads (where possible). In iOS and iPadOS the main thread is responsible for
receiving user input and drawing to the screen, as such, we want to keep intensive work off
the main thread as much as possible. While our machine learning model will be run on the
GPU, rather than the CPU, the memory pool is shared between the two (Apple, 2023c) so
keeping on top of memory usage is crucial to maintaining a responsive app experience.

When a user is drawing a line the app does nothing until the Pencil leaves the screen (i.e. the
line being drawn is finished), at this point we know the drawing has changed and the user has
either finished or will continue drawing. We use this point to trigger our model and the next
steps are shown in 5.1.

Listing 5.1: Queuing drawing changes for inference
f unc queueRecogn i t i on ( canvasView : PKCanvasView ) {

cu r r en tDe t ec t i onWork I t em ? . c a n c e l ( )
l e t newWorkItem = recogn izeWithWork I tem ( canvasView : canvasView )
cu r r en tDe t ec t i onWork I t em = newWorkItem
DispatchQueue . g l o b a l ( ) . a sync ( e x e cu t e : newWorkItem )

}

The first step is to cancel any currently running inference task (this would be any ongoing
inference task from the last line that was drawn, the user may have drawn a new line before
the previous output was processed). We then create a new work item with a reference to the
function to be called (this function is passed a reference to the drawing canvas), and assign
this new work item to a variable to allow us to cancel it in future if needed. The work item is
then triggered to run on a background thread.

This approach ensures we are only triggering a single inference task at any point in time, saving
as much wasted processing time as we can and keeping the required memory low.

The function call recognizeWithWorkItem(canvasView: canvasView), is where we capture an image
of the drawing canvas on a white background (in the same way as when pre-processing our
data for training in 5.2.2), we pass this image to our trained model and await the results for
processing.

Our app successfully maintains a low memory footprint (generally under 100MB, see Figure
5.15a) and while CPU usage does spike occasionally (Figure 5.15b) it is very manageable and
generally no slow down or lag is perceptible by users. Some of these spikes in CPU usage are
simply due to the model being loaded in the memory the first time it is used. This manifests
in a small delay on the first few detection when in use. This can further be seen in the timings
in Table A.5 where the first few detections are significantly slower, at a little under 3 seconds,
before dropping down to under 200 milliseconds. We suspect we could reduce the impact of
this on the user by calling the model with a blank image as soon as the screen is shown or
finding another method of "warming up" the model.

We recently came across documentation from Apple (2023h) which allows a callback when
loading of the model is complete, which may be an avenue to explore in future. The iPad
device used was a iPad Pro (12.9-inch) (4th generation), at the time of writing the latest iPad
Pro is the iPad Pro (6th generation).

If our call to the model for inference is not cancelled it will output a list of bounding boxes
representing a detection and classification for each (i.e. this is the output of the non-maximum



CHAPTER 5. IMPLEMENTATION AND TESTING 39

(a) Drawing app memory usage

(b) Drawing app CPU usage

Figure 5.15: The resource usage of the drawing app

suppression model). We process these bounding boxes both to create a UI preview and generate
SwiftUI code for export.

The processing of the bounding boxes first involves postprocessing the model output. The
detections are received from the model as an array of Apple’s VNRecognizedObjectObservation
objects, we convert these to our own BoundingBox class which contains helper functions and
additional attributes.

We then look for overlapping detections in non-container types (i.e. a navigation bar may
contain a title and some buttons so there is an overlap implicit in this type) and group them
in a list (i.e. a pair of overlapping elements would be one element in the list). We then
iterate over each group of overlapping elements. If the elements overlap more than a specified
heuristic (i.e. 85%) then we treat this as an artefact of the model output and we expand the
bounding box with the highest confidence value to the size of both boxes and keep that. If the
overlaps are less then the heuristic we only keep the bounding box with the highest confidence
value and simply ignore the other box.

The resulting bounding boxes are then further processed with attributes of the UI element
they have been classified kept in mind. This is achieved by filtering the set of results by each
classification, applying our post processing and adding the results to a final list and then
repeating for each class.

Postprocessing UI element detection

For bounding boxes representing either a tabBar or a navigationBar we check the number of
detections, there can only be one of each class in a screen so if we have multiple results
of each we must decide which ones to keep. We again achieve this by using the detection
confidence, the highest value is kept and the bounding boxes of the other detections are
merged resulting in a single tabBar or navigationBar that has the classification, confidence and
other attributes of the highest confidence result but the bounds of the union of all detected
tabBars or navigationBars.

For the navigationBar we further check for any other detected elements of any classification
which have their bounds inside the navigationBar. Of these detections we then look for the



CHAPTER 5. IMPLEMENTATION AND TESTING 40

left-most item, the centre-most item and the right-most item, everything else is discarded.
While any of these may not be present if they are we use them to infer the configuration of
the navigationBar:

• Left-most item - if present this indicates the navigationBar should have a back button.
Apple (2023b) states that best practice is to use the standard back button, which when
used in the "Standard title" size (which we replicate here) is always on the left in
left-to-right languages (it’s reversed for right-to-left languages). Note that we only look
for presence or absence, though what is drawn may make the model’s confidence higher
or lower (for instance if the user has drawn an actual back button that may increase the
chances of detecting the whole navigation bar).

• Centre-most item - While we assume the navigationBar has a title and default it to the
text "title", if this item is present then we attempt to recognize the text the user has
written (see section 5.3.1) and use that in place of "title".

• Right-most item - If present this indicates the navigationBar should have a right bar
button. If something is drawn here we always show a "Done" button regardless of what
the user sketched.

The various combinations of user drawings and their effects on the navigationBar output can be
seen in Figure 5.16. This information is then stored in the bounding box object that represents
the navigationBar.

(a) Title only

(b) Title and back button

(c) Right bar button only

(d) Back and right bar buttons

(e) Back button, title and right bar button

Figure 5.16: How the user’s drawing affects the resulting navigation bar



CHAPTER 5. IMPLEMENTATION AND TESTING 41

Any bounding boxes representing label or button classifications are passed to handwriting
recognition (see section 5.3.1) to attempt to extract any text that may be present. Users can
represent text either by writing the text our or using one or more wavy lines (which is generally
accepted to represent placeholder text in prototypes). If any text is present it is stored in the
bounding box object for later use.

Handwriting recognition

Handwriting recognition or text detection was never explicitly one of our goals, while we were
absolutely needing to detect a label UI element in a user’s drawing, which may take the form
of a wavy line or a piece of handwritten text, we were not necessarily expecting to attempt
to determine the content of that writing. However, during development it became clear that
being able to extract written text and use it in the generated previews would enhance the user
experience.

Rather than training an additional model in the task of handwriting recognition we decided to
use something "off the shelf", specifically Apple provides a text recognition capability as part
of its iOS and iPadOS Vision framework (Apple, 2023j).

To use the built in text recognition we crop the sketch image down to just the bounding box
of the desired component. That image is then passed to a VNRecognizeTextRequest object on
a background thread and the results returned when complete.

The results are not always completely accurate. The Apple model may well not be trained
on handwriting at this scale or any number of other reasons and so the images you see in
this report may show incorrect text. It was decided that having this feature, even if not fully
accurate, was better at demonstrating how this prototype application could work than if the
feature was not present.

5.3.2 Preview generation

Initially we had hoped to find a route to generate a SwiftUI string and interpret it at run-time
to form the preview UI to the user. Unfortunately while SwiftUI code can be encoded as a
string it is still fixed at compile time and cannot be swapped out in quite the way we initially
intended. However, given we support a defined set of UI elements and are providing a tool for
low fidelity prototypes (and not production quality screens) we were able to create a layout
engine which creates a preview UI from the bounding boxes our model outputs.

To create the UI preview we iterate over the list of bounding boxes (which contain everything
needed thanks to the process described in 5.3.1) in a similar fashion to Robinson (2019), for
each box we check the classification and pass it to a matching function for display. Each
classification has its own function responsible for the rendering of that particular user element
type, this allows us control over some specific tweaks.

Navigation bar

The navigation bar is a top level element in SwiftUI, it must sit at the top of the view hierarchy
on the current screen. Unfortunately as our drawing app screen is written in SwiftUI it was
extremely challenging to try to force a NavigationBar to render in child view in SwiftUI. We
didn’t quite find a solution we felt was of a high enough quality, instead we decided to create
our own custom SwiftUI view which replicates the layout of a NavigationBar.



CHAPTER 5. IMPLEMENTATION AND TESTING 42

When creating our own NavigationBar we had to decide on a style to replicate, Apple’s SwiftUI
NavigationBar uses the "large style" by default (Figure 5.17b). However, very few of the designs
we gathered for data capture (5.1.2) outside of Apple’s own apps use this style, instead they
generally use the "standard style" (Figure 5.17a) or their own high fidelity design equivalent.
Our implementation of a NavigationBar can be seen in Figure 5.16.

The bounding box representation of a NavigationBar includes whether the bar has a back button
or not, the text to show in the title (if any) and whether or not a right bar button is present.
If the bounding box does not indicate any title text we simply default to "title" and always
show a title, if it does include it then we use the included text.

(a) Standard style (b) Large style

Figure 5.17: Apple’s navigation bar styles

Tab bar

Similar to the navigation bar (5.3.2) tab bar is an element which must wrap its contents as
children and does not easily scale down to fit inside another container so we created our own
custom SwiftUI view to represent a tab bar.

Label/Text

When we position a text element on the screen we use the detected text from the postprocessing
stage (5.3.1) if present and scale the font to fit the text in to the detected element size. If
there is no detected text (which may occur if the user draws wavy lines to represent a block of
text) then the box is filled with multiple lines of Lorem Ipsum at a fixed font size until the
display size of the box is full. Each of these situations can be seen in Figure 5.18.

Button

Positioning a button element is relatively simple. We use the bounding box as the size of
the button itself and any text detected from postprocessing (similar to a label) is used as the
button title at a fixed font size. If there is no text detected then a placeholder string is used as
the title. The button is added as an actual SwiftUI button and is fully interactive, triggering
an alert when pressed.



CHAPTER 5. IMPLEMENTATION AND TESTING 43

Figure 5.18: Examples of how labels are displayed in the preview panel

5.3.3 Code generation

As with the preview generation (5.3.2), and similarly to many of the approaches discussed in
Section 2.6, we use the post processed bounding boxes generated by our model to generate
our code.

How UI elements are represented in SwiftUI varies depending on the element itself so we
sometimes have to generate significantly different code depending on the element detected.
The biggest changes come from navigation based elements (NavigationBar and TabBar) as
they essentially act as containers and must have the other UI elements as their children. For
instance if we compare the code for displaying a simple label, 5.2, with the code for displaying
that same label in a tab bar, 5.3.

Listing 5.2: Rendering a label
s t r u c t ContentView : View {

va r body : some View {
Text ( "Test " )

}
}

Listing 5.3: Rendering a label in a tab
s t r u c t TabConta inerView : View {

va r body : some View {
TabView {

ContentView ( )
. tab I t em {

Labe l ( "Menu" , systemImage : " l i s t . dash " )
}



CHAPTER 5. IMPLEMENTATION AND TESTING 44

ContentView ( )
. tab I t em {

Labe l ( "Order " , systemImage : " squa r e . and . p e n c i l " )
}

}
}

}

s t r u c t ContentView : View {
va r body : some View {

Text ( "Test " )
}

}

When creating UI previews we handled tab bars and navigation bars by creating our own
representations of them. However for our output code we create "native" UI elements as per
Apple’s SwiftUI documentation (Apple, 2023k).

To translate the bounding boxes into SwiftUI and maintain this hierarchy we baked in a set
of template strings for each UI element we support. Each of these strings is then tweaked
with the information detected by the model and our post processing, including position, size,
text, etc. More primitive UI elements such as buttons, labels and images are built up in to
a ContentView, similar to 5.2. We then check for navigation elements and, if present, we
reference our ContentView inside them.

For buttons we include an action that triggers an alert to appear onscreen when the user
presses them, thus creating an interactive user interface. Similarly text fields can be tapped
on, the keyboard appears and text can be added.

This generated code is recreated every time the model outputs new bounding boxes. This
allows the user to select the "code preview" mode in the app (5.14b) and visibly see the code
change as drawings are added or erased.

5.3.4 Performance

We refer to performance throughout this dissertation and in most cases we are referring
to the accuracy of the model or some other measure of the ability to correctly detect and
classify elements. However, in this subsection we discuss the speed of the model and our code
generation. How quickly does it run? Is an iPad a device that is capable of delivering feedback
quickly to the user? One of our early concerns was that the iPad itself would not actually
have enough resources to run our model and that we would need to access a more capable
computer via a web server or other mechanism to get the results of the user’s drawing.

When training early versions of our model we were pleased to find we could achieve a good
level of performance entirely on the iPad. Table A.5 shows the timings captured while drawing
the sketch shown in Figure 5.19. We captured two main values; the time taken to detect and
classify elements and the full time taken from user sketching to code generation. While the
former is a subset of the latter its useful to have a sense of the complete time taken as that is
what the user experiences.



CHAPTER 5. IMPLEMENTATION AND TESTING 45

The time to detect and classify elements averages 0.66 seconds and the time to detect, classify
and generate code averaging 0.8 seconds. Whilst this is not "real-time", which would be hard
to achieve given the iPad Pro screen refreshing at 120 frames per second (Apple, 2017) which
results in rendering a frame every 8.33 milliseconds, it is fast enough to provide the user a
sense of response or feedback. We consider this nearly real-time and occasionally refer to the
performance as being "near real-time" in this dissertation.

One of systems which also captured sketches digitally, Mohian and Csallner (2020), measured
the timings on their approach. Their average time to detect, classify and output Android app
code was 526ms on their development machine and 94ms on an Amazon EC2 runtime. While
this is faster than our own timings we must bear in mind that the hardware being used by
Mohian and Csallner (2020) (a 16 GB RAM 64-bit Windows 10 machine with a 2.20 GHz Intel
i7-8750H CPU and an AMD64 Ubuntu 16.04.5 Amazon EC2 t2.micro instance) is significantly
more powerful than a 4th generation iPad Pro.

Figure 5.19: A sketch drawn to gather timings from the model running

5.3.5 Exporting

One of our goals is to create code that is then useful as a starting point for developers intending
to take the generated prototype further, or even for users to be able to tweak on device to
achieve their goals (for example styling). To achieve this the users need to be able to export
the code so that it can be used in other applications.

The two main applications that are likely to be useful to our target audience are Xcode (Apple,
2023l) and Swift Playgrounds (Apple, 2023g).

Xcode is an application exclusively for Apple Mac computers and is generally used for building
macOS, iOS and iPadOS apps. To allow our users to open their generated code in Xcode we



CHAPTER 5. IMPLEMENTATION AND TESTING 46

will have to provide a way of exporting the code to a file and then sharing that code in a way
that their Apple Mac can access.

Swift Playgrounds is an iPadOS app, it allows users to run code on their iPad in a sandbox
and while its capabilities are somewhat limited (Chin, 2021) it does support compiling and
running SwiftUI code.

Luckily both applications share a file format they are both capable of opening - .playground.

The .playground file format

Unfortunately Apple have not published any details of the .playground file format or structure.
Presumably they don’t expect third parties to be exporting files in this format. We spent some
time attempting to replicate the file format and discovered that it is little more than a zipped
up collection of Swift files and project files (which could be found in any Xcode project),
however it must contain a "specific type identifier" in order for the Swift Playgrounds app to
identify the file. We resorted to reverse engineering the Swift Playgrounds app itself in order
to retrieve the type identifier, this process was documented in a blog post (Leivers, 2023a).

With this information we were then able to save our generated code to either the iPad local
filesystem or to the user’s iCloud Drive (Apple, 2023f) as shown in Figure 5.20b. Saving to
either of these enables Swift Playgrounds, running on the same device, to open the file and
run the code (Figure 5.20c). Saving to iCloud Drive provides a convenient way for the user to
save the code and open it on their Apple Mac computer in Xcode (Figure 5.20d) from which
the user can run the code on an iOS device or the iOS Simulator (Figure 5.20e.

Making the workflow on iPad more seamless

While both applications are certainly useful to our users, Swift Playgrounds potentially offers
the most seamless experience. The user can sketch a design in our app, see the results, export
the code to Swift Playgrounds and tweak it all on the same device. To make this process as
seamless as possible we wanted to be able to open the Swift Playgrounds app from a button
press in our own application (rather than the user having to leave the app to browse the home
screen and look for the Swift Playgrounds app icon). As with the .playground file format, Apple
has not published any documentation about how this might be achieved. However, as we were
already extracting information from the Swift Playgrounds application we were also able to
locate the "custom URL scheme" used by the application.

A "custom URL scheme" is a unique URL an app registers with the operating system (OS),
when this URL is opened from another application the OS then knows which app to send that
request to. This can be seen with common URLs such as https :// and mailto ://, when these
are actioned in iOS or iPadOS they trigger the Safari and Mail apps respectively. We were able
to discover that Swift Playgrounds registers the URL scheme x−com−apple−playgrounds://
and so we added a button at the top right of the screen called "Playgrounds" (Figure 5.20a)
using the following code:

L ink ( " P layg rounds " , d e s t i n a t i o n : URL( s t r i n g :
"x−com−app le−p l a yg r ound s : // " ) ! )

When a user taps this button it triggers the OS to open Swift Playgrounds. The intention is
that the user can save their project out with the "Export" button, then press the "Playgrounds"



CHAPTER 5. IMPLEMENTATION AND TESTING 47

button to launch straight in to Swift Playgrounds with as little interruption to their workflow
as possible.

5.4 Conclusion

To be able to build the drawing app we had to create several components first. These included
a data capture app running on the iPad which was used to collect sketches from users and
store them on a server for use in training. This data capture app contained tools for labelling
the user data as well as for debugging.

Once we had collected enough data we were able to preprocess it and then use it to train a
model. We would repeat this process several times to experiment with hyperparameters and
data augmentation techniques to try and improve our detection and classification accuracy.
We also found we needed to add a NMS model to our pipeline in order to filter a large number
of possible predictions down to only the ones which have a high enough probability to be worth
using.

Having converted our model to a CoreML format we were able to then use it in our drawing
app. In developing the app we reused parts of our data capture app codebase, such as the
drawing canvas, and built a preview panel to display the system’s interpretation of the user’s
drawing as well as the generated code.

In this phase we paid particular attention to the usage of system resources, keeping memory
usage as light as possible and attempting to keep usage off the main thread. This allowed us
to keep drawing smooth and responsive while still generating responses to the users drawing
frequently enough (whenever a stroke was completed). We were also able to post-process
the predictions from the model, allowing us to combine our knowledge of the convention for
some UI elements with the predictions - for example a NavigationBar can only appear once per
screen and only ever at the top edge.

In lieu of being able to compile code directly in our app (which isn’t permitted by Apple),
we built a method to export our generated code and allowed users to open it in the Apple
Swift Playgrounds app (which is allowed to compile Swift code). This involved some reverse
engineering (see Section 5.3.5) but provides a reasonably seamless experience for users.

In the next chapter we discuss the results of our app with users.



CHAPTER 5. IMPLEMENTATION AND TESTING 48

(a) The drawing we will export (b) Saving our exported code

(c) Our exported code running in Swift
Playgrounds on the iPad

(d) Our exported code running in Xcode on an
Apple Mac computer

(e) Our exported code running in
the iOS Simulator

Figure 5.20: Exporting the code



Chapter 6

Results

6.1 Introduction

In Section 2.8 we found that many authors conducted a user survey to evaluate the performance
of their system.

This chapter presents the findings of own user interviews where participants were presented
with a demonstration of the drawing app and then asked to try creating a screen using the
app. This is in contrast to Adefris, Habtie and Taye (2022) where users were shown output
from their app and asked questions, we thought it would be valuable to get hands on feedback.
There were six participants in total, all of whom work in the field of mobile app development
in roles including developers, UI designers, UX designers and product managers. Due to the
breadth of roles some questions chosen are more appropriate to designers and some more
appropriate to those who work with programming languages. Some participants were involved
in the creation of training data and some had no prior exposure to the project.

6.2 Questions

Questions to participants:

1. Rate the overall usability of the prototype. (Out of 5)

2. Are there specific features or functions that you found easy or challenging to use?

3. Do you have any suggestions for improving the user interface for better usability?

4. Were you able to achieve your goals efficiently using the prototype?

5. Did the prototype help in quickly transitioning from sketching to building UIs?

6. To what extent did the prototype improve your productivity in the design process?

7. How seamlessly would the prototype fit into your existing design workflow?

8. Does the prototype complement or disrupt your current design process?

9. Do you have any suggestions for making it more compatible with your workflow?

49



CHAPTER 6. RESULTS 50

10. Does the prototype accelerate the prototyping phase compared to traditional pencil-and-
paper methods?

11. Was there any time saved or efficiency gained from using the prototype?

12. Evaluate the quality of the code generated by the prototype.

13. Do you have any feedback on the generated code’s clarity, correctness, and/or adherence
to best practices?

14. Can you customize the generated code to meet your specific design requirements?

15. Does the prototype offers enough flexibility to accommodate various design styles and
preferences?

16. Did you encounter any challenges while using the prototype?

17. Would you recommend the prototype to others?

18. Do you have any recommendations on how the prototype can be enhanced or expanded?

19. If you have experience with other prototyping or UI design tools, could you compare the
prototype to those tools in terms of advantages and disadvantages?

The raw results can be seen in Appendix A.1.

6.3 Themes

The analysis of the participants’ answers revealed several similar or overlapping comments.
From the raw results data (Appendix A.1) we counted occurrences of comments or requests
that were common in each interview. Once we had a list of comments that were mentioned by
multiple participants we looked at which of these overlapped or could be grouped (for instance
a participant might mention that they thought they needed an onboarding or instructions
screen and another participant might have mentioned they did not know where to start so
these have an overlap or common theme). These identified groupings or themes are discussed
in detail below.

6.3.1 Theme 1: Detection and classification

Of the participants, half found that the detection of their sketches was not as accurate as they
desired. Participant A commented that “Hand drawing is pretty intuitive, the recognition can
be a bit off sometimes” and Participant F cited “detection issues” as being a concern. Some
participants found that the model either did not detect the object they had drawn, detected
the wrong type of element or drew the element at the wrong size.

Participants who encountered fewer or no detection issues like Participant C said “Very easy
to draw diagrams”. Participant E agreed with this, saying “drawing was easy and responsive.
Generation of prototype was quick to pick up what I had drawn”.

However, Participant D said that they “didn’t know what components it would or wouldn’t
recognise, or what the limitations were”. They also went on to suggest we could “expose the
debug view of what the AI is seeing to the user” to help see what might be the problem. The
debug view is shown in Figure 6.1, when enabled this shows the bounding boxes generated by



CHAPTER 6. RESULTS 51

the model along with the classification and the confidence (i.e. the raw output of the NMS
5.2.5). This shows the model output before we post process it, helping to identify bugs/issues
with out post processing code or highlight incorrect classification.

Figure 6.1: The drawing app with the model debug view enabled.

Overall even the participants who encountered an issue could see the potential in the tool,
going on to have a generally favourable opinion of the app. Every participant stated they
would recommend the app to other people to try.

6.3.2 Theme 2: Correcting

While some participants were very familiar with the iPad and the Apple Pencil and knew how
the stock toolbar (which contains an undo button, redo button and an eraser tool) worked,
others had little or no experience with this. If things went wrong with detection they were
unsure how to correct either their own mistakes or the app’s mistakes.

Participant A was more familiar with the iPad and Apple Pencil combination and experienced
some detection or classification issues. They stated that “object recognition and not having
the option to classify or correct the model yourself is the biggest pain point. You have to just
rub it out and try again.”. However, other participants like Participant D struggled, “when it
did things wrong I didn’t know how to correct it”.

Other participants did not notice the eraser tool but found the undo function and Participant
F was one such user who summarised “because of the detection issues the undo function plays
such a crucial role”.

6.3.3 Theme 3: Onboarding

Half of the participants suggested there was a need for an onboarding screen to be shown to
the user before they started drawing for the first time. Because the app design - when empty
or free of existing sketches - is simply two frames of an iPhone side by side they were not sure
where to draw without being given some instruction upfront.

Participant B suggested that we “split the screen better to be clearer on what is the sketching
space and what is the preview space, Figma does this well.”.



CHAPTER 6. RESULTS 52

Some participants like Participant F had a different reason for suggesting an onboarding screen
as they were looking for a guide to what could be drawn. While referring to the demo from the
author they stated “I liked how you showed me what you could draw, that’s how I would have
drawn an image but some proper onboarding might be good”. This echoes Participant D’s
comment from Section 6.3.1 that they “didn’t know what components it would or wouldn’t
recognise, or what the limitations were”.

The other half of participants had been involved in the data capture stage so the layout of the
app was certainly more familiar - the drawing app was designed to have a very similar user
interface to the data capture app (Figure 5.2) as discussed in Section 5.3. This experience
had perhaps also given them some familiarity with what the capabilities of the drawing app
might be.

6.3.4 Theme 4: Drawing and responsiveness

There was strong positive feedback from half of the participants on the ease of drawing and
the responsiveness of the app. Participant E mentioned that “drawing was easy and responsive”
and Participant C echoed this saying it offered “Very easy to draw diagrams”.

The only real counter to this was Participant B who commented that “there’s a bit of a delay
when generating/recognition”, however we speculate whether this was simply the initial loading
of the model which we discuss in Section 5.3.1.

6.3.5 Theme 5: Transitioning to code

When asked whether the app helped the participants quickly transition from sketching to
building UIs, five of the six users stated that it it did. One of the designers, Participant F,
stated “given the code output it’s actually really useful as I can’t write any SwiftUI right now
so this gives me a starting point”.

While no designers, nor product managers, felt comfortable giving responses to questions
about the quality of the generated code, all participants felt they could edit the code to tweak
the output. This is a significant statement as our experience would generally suggest that
non-developers are usually reluctant to edit code. We speculate that the tool generating the
code from sketches makes it feel reproducible to the participants, that if they broke something
they could just draw it again and quickly replace it.

Of the participants who did feel comfortable commenting on the code quality, they were
generally happy. “Although it generates absolutely positioned code it gives a good starting
point for a junior developer to be given the code and run with it.” said Participant A. Participant
C agreed “whilst not perfect, it is human readable making it easy to make tweaks to fix it.”, as
did Participant E who stated “it’s basic but does the job”.

6.3.6 Theme 6: Theming

Participant E stated it “would be good to add colours and other design elements (e.g. chosen
images)” and they were not alone as others expressed a desire to set the colour that elements
are generated in. Participant A suggesting that “having support to add colours from the client’s
brand in quickly would be a massive selling point”.



CHAPTER 6. RESULTS 53

We don’t necessarily consider it a failing of the app that it doesn’t offer this ability, after all
we are only attempting to generate low fidelity designs, rather that participants are perhaps
keen to have the app generate slightly higher fidelity designs and maybe find more use-cases
where this tool might be appropriate. Participant A also suggests “for prototyping and getting
stakeholders to understand it would save hours of work.”.

Participant B, who is a designer, seemed to understand this distinction, stating it “doesn’t
offer enough flexibility for brands or if you wanted to do high fidelity, but it offers enough
flexibility for wireframes”.

6.3.7 Theme 7: Other tools and user workflows

When asked to compare the app with other prototyping tools, four of the participants were
unable to make a comparison. Participant F said “it’s not a comparison I can make because
there’s just nothing like it, it’s kind of like no-code swift”, similarly Participant A stated “ not
similar enough, other design tools are things like Adobe XD or Figma which offer a different
feature set”.

Many of the users (Participants B,C and E) suggested it would be useful to export the
prototypes to other design tools like Figma or Sketch. While this is out of scope of what we
could achieve it is interesting to see the participants suggesting ways to fit the tool in to their
current workflows.

We discuss what this may mean further in Section 7.5.

6.4 Conclusion

While we purposely included some questions that we expected to only be answered by developers
and some only by designers, we were pleased to get a crossover with some participants. For
designers, the app’s ability to generate code gave them a starting point which they felt they
could replicate if they broke something resulting in greater confidence to experiment with the
code and a willingness to "figure it out". For developers, because the goal isn’t to create
a "high fidelity" prototype, they felt more open to experimenting with designs and more
confident to show their results to colleagues or stakeholders where they might not have done
with traditional tools as they may have felt their drawing or design abilities were not good
enough.

Overall, all participants regarded the app favourably, despite any issues they may have faced.
The most common issue was around detection and classification with some participants having
issues with the generated results of their drawing being incorrect.

We must also acknowledge that this is a small sample size, future work should look to survey
a larger group in order gather more feedback enabling us to draw stronger conclusions.



Chapter 7

Discussion and critical reflection

In this chapter we reflect on the components of the system that we have built, how users
interacted with them and their feedback on it. We consider what parts of the process were a
success and what parts were less successful.

7.1 Data capture tool

The data capture tool worked well and was a convenient way to record user sample data. As
it was built on an iPad we were able to conduct data gathering sessions with users at multiple
locations without being restricted to a computer in an office or a bulky laptop. However,
this also meant that sketches had to be gathered in person. While we knew a number of
potential users who own Apple Pencils and iPads, which could have allowed for distributing
the application wider and recruiting volunteers via the internet, the need for the author to be
involved in the labelling process made this unviable.

Our Firebase cloud solution proved to be a convenient way to store and pass the data back to
another machine for training. There was no need to have the iPad available to do this. We
were able to use Python to create a script to download the data and pre-process it prior to
training without any real complications. This proved to be a convenient, flexible approach
that we would consider using in future projects.

The main issue with the data capture tool was that it was more difficult to gather as much
data as we hoped and not for the reasons we might have expected.

While the data capture tool we created assists greatly in allowing for sketching, grouping/s-
plitting drawings into bounding boxes and classifying each element and all these tools work
well, the actual selection/splitting/combining/labelling process takes time on every sketch. It
also had to either be explained to the current user or the device had to be passed back to the
author for labelling and then passed back to the user again for more sketches. All of this took
time and potentially limited the amount of sketches we could gather in a session with a user.

In addition to this we started to notice that different users label the sketches in different ways
which led to inconsistencies in the data. For example, when labelling a navigationBar (which
potentially contains a title, back button and a right hand bar button) should the elements
contained within it be labelled separately or as part of the navigationBar? Do we want the
model to recognize the whole combination? If not then do we only have a horizontal line to

54



CHAPTER 7. DISCUSSION AND CRITICAL REFLECTION 55

give the model as training? We decided that the navigationBar should be the whole area drawn
by the user, including any buttons or labels they added to it, but in general the answer to
this is that we should simply choose one approach and keep that approach consistent in the
labelled data. This also highlighted another issue around the labelling of data as some users of
the data capture tool may not know the difference between different elements. For instance,
they may have confused a navigationBar with a tabBar. Both of these scenarios result in the
same issue of incorrectly or inconsistently labelled data. However it is difficult to know this
up front and even more difficult to communicate all of these caveats and nuances to users
if we give them the task of labelling the sketches themselves. This led to more onus on the
author to handle the labelling of user sketches and having to be present in person for every
data gathering session.

One future solution to this may be to create a set of comprehensive onboarding and instruction
screens to explain how to label data correctly, though this would likely be a turn off for users.
Another solution may be to separate out the labelling from the sketching, allow users to draw
their assigned screen, it gets uploaded to the server and then the author uses the tool download
these unprocessed sketches to split and label the data asynchronously.

We also found that this inconsistent labelling was a problem with some of our early captured
data and retrospectively changing this was difficult. If a simple classification needed changing
this was a simple but tedious process (as browsing our tree structure in Firebase to manually
change data is time consuming). However if the bounds of an element needed changing this
became extremely difficult as we do not have a user interface for this, instead we had to
calculate values by hand. When the latter case occurred it was easier to delete this data and
capture more instead of attempting to edit it.

In an effort to make it easy for users to get started with creating training data we display
sample screenshots of an existing app alongside the drawing canvas. This is an evolution of the
approach taken by Baulé et al. (2021) who present their volunteers with screenshots of apps
and then ask them to draw them on paper. The user then copies that user interface as a low
fidelity sketch. We did not encounter users who were stuck on what to draw, they were all able
to just get going, as the interface was mostly just "drawing" there was little barrier to entry.
Different apps, however, treat their design in different ways. Sometimes a design has buttons
which look identical to labels, i.e. there’s no styling or perhaps a colour difference between
a label and a button, and this makes it hard for a model to learn the difference between a
label and a button. Particularly if pre-processing involves greyscaling the image or otherwise
removing the colour. This happens with many UI element types, a button may be just text,
underlined text (similar to a hyperlink) or a fully designed, bordered button with a fill colour
or gradient – should these all be labelled as simply a button? In future versions we could
consider separating out more types, for our button example we might have "bordered button",
"underlined button", and so on.

Our approach of showing users a screenshot of an existing app had another drawback - we
ended up with an inconsistent number of examples of UI elements drawn by the user. UI
elements such as navigationBar or tabBar only occur once on a given screen, however elements
like buttons or text labels may occur multiple times in the screenshot. There is also no
guarantee a screenshot contains an example of each type of UI element we want to support, in
fact most do not and so some classes naturally resulted in having fewer examples and some
resulted in having more. This can be seen in the count of elements in table 5.1 where we have
many examples of a button but very few examples of a segmentedControl. One way we could



CHAPTER 7. DISCUSSION AND CRITICAL REFLECTION 56

mitigate this in future might be to show users specific UI element types and ask them to draw
them multiple times (in addition to copying low fidelity versions of screenshots).

While creating the data capture app we built in a number of tools including combining and
splitting tools which functioned well for allowing the author to easily separate and group
sketches/strokes into UI elements and then label them with a classification. We also created
a debug tool which shows the model’s current predictions (see Figure 6.1). It was a useful
indicator for whether the current user’s drawings were able to be detected by a working version
of the model - i.e. if they can’t be detected that may be a good indicator that their training
data is valuable to include in the next round of training. However, it turned out to be useful
in more ways than we intended. It was originally expected to be a convenient way to verify
what the model would classify drawings as in the data capture tool (as we produced many
different versions of models) but it could eventually become the building blocks of something
that would help speed up the labelling process. In the drawing tool it became a useful way to
work out what was happening "internally", almost like a way to debug the user’s drawing.

7.2 Training the model

We were able to train a model which was capable of recognizing sketches reasonably well with
a relatively small dataset. While it may not recognize as many classes as well as we might have
liked, it does recognise popular classes like label, button, image, navigation bar, tab bar well.

Similar to authors like Beltramelli (2017) and Liu, Hu and Shu (2018), the main issue for
training stems from the amount of data we have. While we had a reasonable number of
examples of common classes like "image", "label" or "button" others, like "segmented control",
have very few examples. This is a common issue in our problem domain, Altinbas and Serif
(2022) share a graph of the count of the different UI elements in their dataset and they find
that the count of label, button, icon and image examples far outweigh the count of other
elements.

Additionally, there is a chance those few examples may not be included in the training set -
they could be in the test or validation set when we split all of our images prior to training.
Obviously the majority end up in the training bucket but we cannot guarantee examples of
infrequently occurring classes will end up there. For classes with fewer examples we are more
likely to see the model confuse them with other elements or not be able to detect them at all.
We can see an example of both of these scenarios in Figure 7.1, here we show the confusion
matrices for experiments 34 and 35 in which we can see that the segmentedControl element
in one experiment is confused with a textField but in the other is confused with a button. In
the same figure we can also see that neither experiment is able to detect a switchButton. This
lack of data drove us to only really be able to support more common UI elements, this is
common amongst other solutions in our literature review (Chapter 2) with some authors only
supporting binary classification (Nguyen and Csallner, 2015). Although this is not ideal it did
not seem to be a huge issue while testing with users as they mostly wanted to draw the more
common elements. They had more issues with detection where the model would sometimes
detect the correct element and sometimes not. We feel more data would have helped correct
this issue as well.

While we may not have had as much data as we might have anticipated, the data augmentation
techniques we experimented with (Section 5.2.3) successfully improved the accuracy of the



CHAPTER 7. DISCUSSION AND CRITICAL REFLECTION 57

(a) Confusion matrix (experiment 34) (b) Confusion matrix (experiment 35)

Figure 7.1: Confusion matrices from experiments 34 and 35

model when compared to the default training with no additional augmentation.

We also observed that training took a longer period of time than was perhaps expected. In
particular when training more layers (when fewer layers were frozen) we frequently encountered
training times greater than six hours on an Apple MacBook Pro (Apple Silicon M2 Pro CPU
with 32GB memory). With further investigation we discovered an issue with YOLOv5 which
results in it only training on the CPU when on an Apple Silicon machine. We time-boxed an
investigation into this issue and were unable to find a solution. Rather than spend further
time on it we simply managed training times by running overnight or in the background when
performing other tasks. As an experiment we were able to train a model using YOLOv8 on the
GPU, this actually resulted in a similar training time to our maximum YOLOv5 training time
(despite only running for around 180 epochs, where it auto-stopped due to lack of accuracy
improvement) and produced a vastly less useful model - we can see in Figure 7.2 that the
YOLOv8 model has a lower confidence and lower F1 score for all classes.

(a) F1 curve using yolov5 (experiment 35) (b) F1 curve using yolov8

Figure 7.2: F1 curves from different versions of YOLO

We did not spend any additional time tweaking hyperparameters for our YOLOv8 experiment
but we were able to get reasonable results with YOLOv5 using the default setup, so while we
might expect to be able to improve the results a little for YOLOv8 we doubt that changing
hyperparameters would lead to vastly different results. Instead the differences between the

https://github.com/ultralytics/yolov5/issues/8508


CHAPTER 7. DISCUSSION AND CRITICAL REFLECTION 58

two YOLO approaches are likely to be the reason for the differing outcomes. YOLOv8 is
very similar to YOLOv5 in that it is made up of a Feature Pyramid Network consisting of
a backbone, neck and head, however the make up of these components is different (Selcuk
and Serif, 2023), they contain different sizes of convolutional layers and different modules. In
addition, and perhaps most significantly, YOLOv8 does not use anchor boxes, YOLOv5 starts
with a predefined set of anchor boxes which it learns from the input data, instead YOLOv8 tries
to predict them. Our theory is that this results in YOLOv8 requiring more data than we were
able to provide for it to perform well. While we were not able to experiment with this theory
Selcuk and Serif (2023) were able to achieve a high level of accuracy when training YOLOv8
with 4543 UI images (the same dataset as Selcuk and Serif (2023)) which is considerably more
than from our 145 images.

While training time was perhaps not as fast as might have been expected we were able to
manage it and this allowed us to experiment with variations on the model and changes to
hyperparameters or different splits of the data amongst training/test/validation. This would
have been more difficult if the training times were much more significant.

Another distraction we did not anticipate is that when training the model, we had expected
the process to export a file which we could convert to CoreML format and immediately get
working in our app. Unfortunately that was not the case and a fair amount of additional work
was required to identify the issues and work up a solution, specifically around need for adding
in non-maximum suppression (discussed in section 5.2.5).

Overall we feel the model we created was as accurate as it could be for the amount of data
available and it performed well enough to show users the potential of the system (6.3.1).

7.3 Drawing app

As highlighted by many of our users, the drawing app would benefit from either a better UI
design or some introduction/onboarding screens informing users where to draw and where to
expect their preview output (see Section 6.3.3).

In terms of the design we suspect this is due to us initially presenting the user with two images
of an iPhone frame which are indistinguishable. Looking at Figure 5.18, if the sketch area and
preview area are empty they look the same.

While the design should be relatively simple to improve for clarity, we suspect some of the
points made by users referring to capability and what components can be recognised, would
be resolved by improving our model. The obvious route to an improved model would be to
gather a greater quantity of data.

Despite this, all of the users seemed to find the drawing process intuitive and understood how
it was meant to work from the outset (Section 6.3.4).

During the development of the drawing app we encountered a few issues that we attempted
to address or manage. As we created subsequent versions of the model (either because of
collecting more data or to experiment with hyper parameters) and added them to our app, we
found that our thresholds for detection of elements changed. For some elements like label,
button, image this was not an issue as we take a default threshold built in to the model (this
value is 0.25). Conversely we apply additional post processing to elements like navigationBar
and one of these post processing steps is to filter out any occurrences with confidences lower



CHAPTER 7. DISCUSSION AND CRITICAL REFLECTION 59

than a specific value (for some models we found 0.45 to be appropriate). This part of our
process ensured that only a single navigationBar could occur, and was mostly successful, but
we encountered issues as different model versions needed this value increased or decreased.
This step could be improved by enhancing other post processing steps - we already only take
results close to or at the top of the screen, but this threshold could be tightened - as well
as training our model with more navigationBar samples. We could also address the YOLOv5
anchors discussed in this section.

Sometimes our output elements do not align to the original drawing’s bounds or they overlap
with other elements where they should not. This can be seen in Figure 7.3 where we can see
the debug tool (in green, Figure 7.3a) is different to the drawing bounds (in red, Figure 7.3b)
and is also showing different bounds to the output for both the image and the tab bar.

Furthermore, we can also see that the output image height is incorrect in Figures 7.3 and 7.3b.
However, a small change to a nearby element (the bottom "Images" label - we added an "s")
causes the model to re-run and detect the height of the image more successfully (Figure 7.3c).
While this is not an issue for the tab bar (as our post processing will force it to be full width
as this is the only way a tab bar can occur), we cannot apply this logic to an image which can
be any size.

(a) Debug tool bounds (b) Drawing bounds

(c) Output image height changed

Figure 7.3: A drawing showing the difference between model output, debug mode and actual
drawing bounds

There are a number of causes of this issue. The first is that our post processing could be
improved further. Because we are able to receive the drawing, perform the model inference and



CHAPTER 7. DISCUSSION AND CRITICAL REFLECTION 60

draw the output all on a single device we could use the knowledge of the drawing’s bounding
box information in our post processing to better align the output with the intended size.

The other cause of the mis-positioning issue is due to how YOLOv5 locates objects. It uses
anchor boxes (as discussed in Section 5.2.5). These anchor boxes are a fixed size and created
as part of the training process. As with the rest of the model training they are dependent on
the variety and quantity of training data. It may be that our data did not produce anchor
boxes that are a good fit for real world data, or simply that anchor boxes are not a good
match for our type of data - UI elements like image’s can be any size after all, so attempting
to bound them to fixed anchor boxes may be inappropriate.

Overall the resulting app was able to recognise sketches reasonably well. While some of the
participants in our user interviews had issues with the app correctly detecting and generating
what they expected (Section 6.3.1), they were happy to erase or undo their drawings and
try again to get the results they wanted (Section 6.3.2). Furthermore, most users found the
drawing intuitive (Section 6.3.4) and were impressed with its abilities and possibilities.

7.4 Code generation and exporting

The app successfully generates SwiftUI code which can be exported and compiled by Apple’s
compiler. We have not seen any instances where the user has managed to draw something
which generated code that could not be compiled in the latest version of the drawing app.

The code generated uses absolute positioning for UI elements, this has the disadvantage that
the UI it represents will look correct on the screen size on which is was drawn but on other
screens of smaller or larger size it will not scale up or down. While this is fine for prototyping,
when building the "real" product the code generated would need to use a layout system that
allows for varying screen sizes. However this did not really seem to be an issue for users
(Section 6.3.5).

Being able to export a file and open it in Apple’s Playgrounds app on the same device and
subsequently show that the code compiles is very convenient. Users generally seemed happy
with this transition from generating code via drawing to then be able to run and further edit
the code (see Section 6.3.5).

While the ideal solution would have been to compile the generated code in app, there is no
Swift compiler available to run on iPad OS (in third party apps) and so compromises had to
be made. However, our solution is close enough to this ideal and didn’t seem to be an issue
for any of our users (see Chapter 6).

7.5 Compatibility with users’ workflows

The user survey revealed several interesting points around the workflow in use by our participants.
Many were keen to be able to "theme" the output of the app (Section 6.3.6), with the goal
of being able to present prototypes to clients in their brand colours. This is certainly an
interesting idea and it could be argued this starts to push the output of the app from low
fidelity towards more higher fidelity designs. It also may indicate that the survey participants
are thinking about how this could fit into and enhance their workflow, rather than dismissing
it.



CHAPTER 7. DISCUSSION AND CRITICAL REFLECTION 61

The other interesting area for discussion relates to the tools used by the participants (Section
6.3.7). Many named tools such as Figma or Adobe XD, which are generally used for high
fidelity design or high fidelity prototypes. We would speculate that the participants are generally
working with pre-existing apps where the design language has already been established and so
paper prototypes perhaps make less sense at this stage. This may be an interesting area to
explore in future, specifically as to whether we could incorporate high fidelity UI component
designs (i.e. a branded buttons, which may be a step beyond "theming") to start outputting
code which more closely resembles high fidelity prototypes and offers greater commercial value
for the tool.

This may suggest that the tool we built doesn’t currently fit the user’s existing workflow.
There may be several reasons for this, as Participant F noted there is nothing similar available
currently so it may require a change of workflow, or perhaps it does not quite fit in its current
state as it is not a production level application. It may also be that the users surveyed are
not currently involved in prototyping for a new app, instead they may be evolving existing
apps with an established design (for which Adobe XD etc would make it fast to drag and drop
components together for new screen designs - though there’s currently no mobile app code
exported from this). Or it could simply be that our survey size was too small, involving too
few users to get a conclusive overview of how this tool might fit into various design workflows.

7.6 Conclusion

In this chapter we reflected on the components we built and the feedback we received from the
user survey. The app successfully allows users to sketch out a UI and automatically generate
working SwiftUI code, albeit sometimes with some detection or classification issues. We believe
many of these issues could be lessened or resolved by improving our model. As the project
progressed and we captured more data we created further iterations of the model and steadily
improved detection. If we continue this process over a longer period of time we believe we
could achieve better detection and classification accuracy in the future.

Our participants also noted that the UI design of our drawing app was not as clear as they
desired in terms of where they should start, what they should do or what the capabilities
are. We should look to update this in future versions to make it more intuitive and add an
onboarding screen to introduce users to the app’s features.

A key area of interest is how the app fits into a user’s existing workflow. While the sample size
of our survey was small we hoped there may be designers who would find the app a better fit
for their workflow. It would be interesting to explore this further for future versions. Overall,
we were encouraged to find that most participants were impressed with the app and could see
potential value in using the tool.



Chapter 8

Conclusion

The goal of this project (1.5) was to create an application that could generate code from
hand-drawn sketches of mobile UI designs in an effort to improve the prototyping phase of
mobile app software development. In our literature and technology survey (Chapter 2) we
found that iOS was an under-explored area in the research, and more specifically that SwiftUI
was completely unexplored as an output format. We also found that the reason UI prototyping
is often performed with pen and paper is the ease of use compared with other approaches.
With that in mind we decided to create an iPad application that used the Apple Pencil as
input (Chapters 4 and 5), attempting to replicate the ease of using pen and paper whilst also
providing cutting edge features like SwiftUI code generation. We then undertook a user survey
to gather feedback on our approach (Chapter 6).

In Section 1.5 we proposed a research question, asking how the use of an iPad app for
sketching mobile designs and automatically generating code might impact the efficiency of
rapid prototyping in UI/UX design, and in what ways does this method offer advancements over
conventional prototyping techniques? We believe it can aid the efficiency of rapid prototyping,
and whilst our user survey (Chapter 6) did not show our tool slotting easily into participants’
existing workflows it did spark enthusiasm amongst the group and gave non-developers the
confidence to edit code. If we were able to see similar results with a larger sample group that
would be a significant positive result and show huge potential for increasing the efficiency
of rapid prototyping as designers and other non-developers would perhaps be able to create
working, native prototypes of new app designs without utilising expensive developer expertise.
Furthermore, our iPad app offers up several advantages over conventional prototyping tools
(such as pencil and paper) which include being fully digital, generating code from sketches
automatically and the ability to share this code.

8.1 Contributions

While the project is inspired by existing works it makes a number of developments and
contributions to the field.

Firstly, most existing research or software projects of a similar nature (see Section 2.3) rely
on the use of a computer such as Baulé et al. (2021) where images of sketches are captured
with a mobile device and then use a web tool to perform the rest of the functions. Most take
the approach of processing a photo of a user sketch and some allow the user to sketch using

62



CHAPTER 8. CONCLUSION 63

the mouse or other input device (Mohian and Csallner, 2020). Our project improves on these
approaches by using an iPad and Pencil which are smaller than a full size computer and nearly
as portable as a notebook and pen. Furthermore, our app can run entirely offline allowing
users many of the same freedoms that a pen and paper approach might provide. Whilst it is
not clear whether similar projects required an internet connection or not, we would probably
assume that most that rely on a web tool require a network connection. It is hard to argue
with the portability that our app provides.

We believe that our approach is the first such project to generate SwiftUI code, and while
other research has looked to generate iOS code it is certainly less prominent than Android and
is often cross platform code, such as AppInventor used by Baulé et al. (2021), rather than
what might be considered "native" code (Swift or Objective C).

Whilst our training dataset is gathered on the device we are targeting, other research has
generally focused on either gathering (or reusing) pen and paper sketches (Baulé et al., 2021)
or generating sketch-like images from other images (Robinson, 2019) or other synthetic data
sets like Syn (Pandian, Suleri and Jarke, 2020). This removes some element of doubt as to
whether there are issues with our data that affect performance from the perspective of "are
our sketches realistic enough" or other faults we might be forced to question if we had used
generated or artificial sketches (Calò and Russis, 2022). We might also have questioned the
similarity of line data (thickness/texture/etc as discussed in Chapter 4) if we had attempted
to train using paper-based sketches.

Our model provides near real-time feedback (Section 5.3.4) to users as they sketch and our app
allows the user to draw naturally as they would with pen and paper with the model continuing
to respond as they draw further. In our technology survey we were only able to find limited
examples of other research where a response from the system is provided as the user draws
(Mohian and Csallner, 2020) and even then it required the user to indicate they had drawn
an element (instead of the system figuring it out), which - unlike our app - offers quite a
jarring requirement for the user compared with pen and paper. The only other example we
were able to find was from Wimmer, Untertrifaller and Grechenig (2020) who use a computer
and webcam mounted to a whiteboard to capture sketches of web page layouts and generate
them as the user draws. While they achieve a similar goal of allowing users to draw naturally
and receive feedback with previews in real-time, their setup is more cumbersome and less
portable than our approach. They do not mention the time taken for their system to generate
an output, making it difficult to compare whether their claim of "real-time" is any faster or
slower than ours.

As far as we have found, no other approach allows the entire user experience to occur on a
single device without an internet connection (see Section 8.2 for our caveat), matching the
versatility of pen and paper prototyping. Mohian and Csallner (2020) were the closest to this,
creating a website that allowed users to draw with a mouse and marking each drawn element
as complete for processing and repeating until the full drawing was complete. However, it
relies on running in a web browser with an internet connection. Our app allows the user to
draw, see a live preview, generate code and compile it or tweak it (in Swift Playgrounds) all
on a single device and all offline. While pen and paper has the advantages of ease of use and
portability, it lacks polish and cannot generate code.

Other approaches such as Robinson (2019) may require that the user digitises sketches,
uploading them to online services and, if they target Apple platforms, may further require



CHAPTER 8. CONCLUSION 64

code to be exported to other devices (Swift and SwiftUI code can only be compiled on Apple
systems). We believe ours is the first approach to use a mobile device to perform the whole
process. While other approaches could potentially deploy their solution on a laptop (which
could perhaps be considered a mobile device of sorts) the majority of them would still be
gathering sketch data via camera input or transferring from a phone to then move on to the
computer. This is important as it is another example of where we are trying to reduce the
differences between paper based prototyping and digital prototyping systems, if we can match
the portability and speed of paper then we are on the right track. Wimmer, Untertrifaller and
Grechenig (2020) have similar ambitions to build a system that allows authors to avoid the
manual digitisation of sketches. Their system successfully captures user sketches in real-time
from a whiteboard, however they acknowledge in their limitations that a smartphone app or a
graphics tablet approach would potentially provide a better setup. Theoretically, there would
be nothing to stop us also allowing touch input (rather than only Apple Pencil) for drawing
and deploying the very same app on an iPhone, it would still work and likely with comparable
performance to the iPad Pro we have tested on.

Our data capture process is also unique. The majority of approaches, as mentioned in Section
2.5, use drawings gathered from volunteers on paper. A few, such as Mohian and Csallner
(2020), used sketch data captured digitally. We take this a step further with our system. We
created a data capture iPad app which allows the user to draw sketches (see Section 5.1).
The user is provided with a random screenshot to make a low fidelity copy of (an evolution of
Baulé et al. (2021)). We provide various tools for the user to then label the elements of the
drawing (including splitting and grouping) and when complete, the drawing and its metadata
is saved to our Firebase server ready for use in training.

8.2 Comparison to our original requirements

In this section we compare the app we built to the requirements we originally created in Chapter
3. The app successfully met all the requirements.

Requirements RQ1 and RQ3 specified that the user must be able to draw on the device and
that the user should be able to draw with a stylus. Using the Apple Pencil and iPad achieves
these requirements as it allows users to draw using the Pencil (stylus) directly on to the iPad.

As discussed in section 5.3.4, our model performs in near real-time, and provides the user with
prompt feedback. This certainly achieves requirement RQ4.

The app captures the user drawing and passes it to our trained model every time the Pencil
leaves the screen. Most user interface elements take at least one stroke to draw so this results
in the model running at least once for each element the user is drawing. This results in the
app generating code automatically as needed, fulfilling requirement RQ5.

Requirement RQ2 specifies we must generate SwiftUI code. We discuss our generated code
in Section 5.3.3 and 7.4, it successfully generates SwiftUI code that can be independently
compiled in Apple’s apps and tools.

All of the above fulfilled requirements run on the iPad device without the user having to
context switch or move to a computer. To compile their generated SwiftUI code they can
use the Apple’s iPad app "Swift Playgrounds" (Apple, 2023g) and we even added a shortcut
button in our app to open the Playgrounds app for them. We consider this to have fulfilled



CHAPTER 8. CONCLUSION 65

requirement RQ6.

We ended up building both the data capture app and drawing app within one app and allow
the user to choose where to go from the introduction screen. Prior to the introduction screen
there is an initial loading screen that requires an internet connection as it fetches a screenshot
for use in the data capture app. However, the drawing app portion has no need for an internet
connection. Once a user is past the initial screen the WiFi can be disabled and the drawing
app will still function. It is not a significant piece of work to separate the drawing app properly
from the data capture app, however as this was not one of the main goals of the project this
remains a piece of future work. In keeping with these goals we specified requirement RQ8 as
a "could" in the MoSCoW analysis and we feel we have accomplished this. The app could
indeed work "offline" with a little additional development time (and can currently be used
offline with a little planning - loading to the initial screen with a connection).

Our final requirement, RQ9, referred to not considering complex UI designs, navigation or
animation as part of our project but we have built a solid foundation upon which we could
begin to build out these more complex areas in future.

8.3 Future work

Throughout this project we have encountered areas for potential future research or development.

8.3.1 Improvements to the data capture tool

Assuming a future version of the app would likely need to gather more data we would intend to
update the data capture tool in an effort to speed up the labelling steps discussed in Section
7.1. One option for speeding up this stage would be to incorporate the latest version of the
model and use it to do a first pass at grouping and labelling the sketches. The user can then
confirm or correct those labels and upload the results and this would significantly speed up the
data capture process.

8.3.2 Model training

There are various opportunities for us to gather more data from users and subsequently update
our model to improve classification and detection and in future introduce more UI element
types.

The first step would be to introduce a way for the user to mark wrongly detected (or undetected)
elements with their correct classifications (and potentially locations). This extra input data
could be immediately reflected in the preview and code output panels but can also be used as
input data along with a capture of their sketch.

One way to use this data may be to explore leveraging Apple’s updatable CoreML model
feature (Apple, 2023i) to personalise the on device model with the user’s individual sketching
style. While this would not help improve the general model for other users it would keep the
user’s sketch data private to their own device.

Another route would be to upload these corrections (with permission from the user) to our
own server in the same format our data capture app uses. These extra examples can then be
used to expand our data set and produce improved models for future updates of the app.



CHAPTER 8. CONCLUSION 66

In our implementation we were able to detect and classify a number of popular UI elements,
however there are more elements that we did not attempt to detect (mostly due to lack of
data). We also have elements which under perform or are infrequently detected compared
to more popular elements like image or label. Further data capture could be undertaken to
gather more examples of the less common UI elements in an effort to train a more accurate
and reliable model.

There are also opportunities for us to experiment with more models or algorithms. Expanding
our dataset would allow us to test our theory that YOLOv8 requires more data to train
an equivalent model and determine whether or not it’s anchor free approach is superior to
YOLOv5 for our purposes (Section 7.2). Though it is worth noting that Selcuk and Serif (2023)
compared YOLOv8 to YOLOv5 and found only marginal improvements in accuracy. Another
route to attempting to improve our anchor box accuracy may be training with YOLOv5-MGC
(Cheng et al., 2022). This uses K-means++ to generate anchor regions instead of the K-means
algorithm used by Ultralytics YOLOv5 in an effort to make them more suitable to a UI element
dataset, they also tweak the models backbone to try and improve detection and classification
accuracy.

A completely alternate approach may be to capture and use the vector data we have from the
users’ drawings for training a new model in a similar manner to Mohian and Csallner (2020).
It may be that the additional data such as drawing order etc can produce a more accurate
model than training with simply image data alone.

8.3.3 Detection and classification

From the user’s drawing we have location information about each of their individual UI elements
and we then pass the whole image to the trained model which generates its own set of location
information for the detected elements. As we discussed in Section 7.3, the output position or
size is sometimes wrong, we could look to correct this bounding box data when we think we
have better information in the original sketch.

Participants in our user survey (Appendix A.1) commented that they would normally design to
a grid, with set margins and other such fixed sizing. They suggested it would be beneficial for
the app to output with this in mind, aligning items where appropriate and matching the ideal
spacing of the designers grid.

It was highlighted in Section 2.9 that many apps rely on a list view of sorts, however detecting
list or table views was something we did not have time to address. This would be another
interesting area to explore as we noted in Chapter 2 that very few other approaches had
attempted to tackle this layout either. Taking this a step further we could also attempt
to detect and output other types of screen layout in an effort to move away from absolute
positioning in our output code (see Section 7.4).

8.3.4 Other platforms and languages

One of the goals of this project was to be able to accomplish every task the user may need,
including compilation, on a single device. However, it may be useful to the user to also offer
to output languages which cannot be compiled on the device as well. For instance, we could
output Android code in the form of either XML layouts (Google, 2023e) or Jetpack Compose
(Google, 2023c) code, the latter being very similar to SwiftUI. While we could not compile the



CHAPTER 8. CONCLUSION 67

code on device it may be useful for users to be able to export for additional platforms without
additional coding knowledge.

Similarly, we could also look to integrate cross-platform languages. A more complex and
integrated solution could be created with React Native. We could potentially embed a React
Native view in the app instead of our current preview panel. This could be populated with our
own generated JavaScript and be able to run and update live code from our app without the
user having to leave to another app to compile (as happens currently). While we had specific
reasons for choosing SwiftUI (see Chapters 2 and 3) this may be another interesting avenue to
pursue.

Investigating adapting the UI of our drawing app for deployment on an iPhone would be a
reasonably simple exercise in terms of design and development. The interesting area to explore
further would be how easily a user can draw a UI on a device which is the same size as the
expected output. Would our model still detect sketches drawn using a finger instead of an
Apple Pencil? Can the user draw in a detailed enough manner in this way? There may be
potential solutions such as allowing the user to zoom in and out to make smaller drawings but
these likely also introduce new challengers. However, having the ability to create prototypes in
this way on a phone would be a compelling offering.

8.3.5 Extending code generation

There are also several opportunities we could explore to extend the functionality of code
generated beyond adding more UI elements. It would not be a huge leap to allow multiple
screen sketches and have users draw a line from a button to another screen to indicate
navigation. This could then be output in the code.

Another major part of many mobile apps is scrolling. There are several options for supporting
this. One of the easier routes would be to allow the user to extend the sketchable area
downwards to create a longer screen. Then when code is generated if the element’s positions
run off the bottom of the screen it is an indication that the screen should scroll and this can
be accounted for.

With more time it would be interesting to experiment with machine learning based approaches
to code generation, such as from Beltramelli (2017) and Liu, Hu and Shu (2018), as opposed
to our programmatic approach.

8.3.6 High fidelity design output

While our project focused on generating low fidelity designs several participants in our survey
(Appendix A.1) suggested high fidelity output would be nice to have too. This would be an
interesting area to explore, specifically whether generative AI techniques such as Generative
Adversarial Networks (GAN) could be employed to produce a high fidelity design based off a
low fidelity sketch, as has been suggested by Beltramelli (2017).

8.3.7 General improvements

Many of the following improvements were considered out of scope for this project but would
be valuable additions for a production version of this application:

• Adding support for accessibility to the generated code.



CHAPTER 8. CONCLUSION 68

• Adding support for coloured elements, for instance if a sketch is drawn in blue then the
outputted element should be blue.

• Adding support for theming (providing a number of brand colours), once a theme is set
all elements would be generated in the theme colours.

• Support for different sub-types of UI elements, for example an underlined button, a label
button rather than only the standard button we currently support.

• Update the design of the drawing app to make its usage clearer to new users.



Bibliography

Abdelhamid, A.A., Alotaibi, S.R. and Mousa, A., 2020. Deep learning-based prototyping of
android GUI from hand-drawn mockups. Iet software [Online], 14(7), pp.816–824. Available
from: https://doi.org/10.1049/iet-sen.2019.0378.

Adefris, B.B., Habtie, A.B. and Taye, Y.G., 2022. Automatic Code Generation From Low
Fidelity Graphical User Interface Sketches Using Deep Learning. 2022 international conference
on information and communication technology for development for africa (ict4da) [Online],
00, pp.1–6. Available from: https://doi.org/10.1109/ict4da56482.2022.9971204.

Altinbas, M.D. and Serif, T., 2022. GUI Element Detection from Mobile UI Images Using
YOLOv5. Lecture notes in computer science [Online], pp.32–45. Available from: https:
//doi.org/10.1007/978-3-031-14391-5_3.

Amazon, 2018. Amazon Mechanical Turk [Online]. Available from: https://www.mturk.com/
[Accessed 2023-12-6].

Apple, 2017. iPad Pro, in 10.5-inch and 12.9-inch models, introduces the world’s most
advanced display and breakthrough performance [Online]. Available from: https:
//www.apple.com/uk/newsroom/2017/06/ipad-pro-10-5-and-12-9-inch-models-
introduces-worlds-most-advanced-display-breakthrough-performance/ [Ac-
cessed 2023-11-30].

Apple, 2023a. Apple Design Awards [Online]. Available from: https://developer.apple.
com/design/awards/ [Accessed 2023-4-16].

Apple, 2023b. Apple Human Interface Guidelines - Navigation bars [Online]. Avail-
able from: https://developer.apple.com/design/human-interface-guidelines/
navigation-bars [Accessed 2023-10-26].

Apple, 2023c. Choosing a Resource Storage Mode for Apple GPUs [Online]. Available from:
https://developer.apple.com/documentation/metal/resource_fundamentals/
choosing_a_resource_storage_mode_for_apple_gpus [Accessed 2023-10-27].

Apple, 2023d. Discover visionOS [Online]. Available from: https://developer.apple.com/
visionos/ [Accessed 2023-12-6].

Apple, 2023e. Human Interface Guidelines [Online]. Available from: https://developer.
apple.com/design/human-interface-guidelines/guidelines/overview/ [Ac-
cessed 2023-4-16].

Apple, 2023f. iCloud Drive [Online]. Available from: https://www.icloud.com/
iclouddrive [Accessed 2023-11-3].

69

https://doi.org/10.1049/iet-sen.2019.0378
https://doi.org/10.1109/ict4da56482.2022.9971204
https://doi.org/10.1007/978-3-031-14391-5_3
https://doi.org/10.1007/978-3-031-14391-5_3
https://www.mturk.com/
https://www.apple.com/uk/newsroom/2017/06/ipad-pro-10-5-and-12-9-inch-models-introduces-worlds-most-advanced-display-breakthrough-performance/
https://www.apple.com/uk/newsroom/2017/06/ipad-pro-10-5-and-12-9-inch-models-introduces-worlds-most-advanced-display-breakthrough-performance/
https://www.apple.com/uk/newsroom/2017/06/ipad-pro-10-5-and-12-9-inch-models-introduces-worlds-most-advanced-display-breakthrough-performance/
https://developer.apple.com/design/awards/
https://developer.apple.com/design/awards/
https://developer.apple.com/design/human-interface-guidelines/navigation-bars
https://developer.apple.com/design/human-interface-guidelines/navigation-bars
https://developer.apple.com/documentation/metal/resource_fundamentals/choosing_a_resource_storage_mode_for_apple_gpus
https://developer.apple.com/documentation/metal/resource_fundamentals/choosing_a_resource_storage_mode_for_apple_gpus
https://developer.apple.com/visionos/
https://developer.apple.com/visionos/
https://developer.apple.com/design/human-interface-guidelines/guidelines/overview/
https://developer.apple.com/design/human-interface-guidelines/guidelines/overview/
https://www.icloud.com/iclouddrive
https://www.icloud.com/iclouddrive


BIBLIOGRAPHY 70

Apple, 2023g. Learn to code with Swift Playgrounds [Online]. Available from: https:
//developer.apple.com/swift-playgrounds/ [Accessed 2023-11-3].

Apple, 2023h. load(contentsOf:configuration:completionHandler:). Available from: https:
//developer.apple.com/documentation/coreml/mlmodel/3600218-load [Accessed
2023-12-12].

Apple, 2023i. Personalizing a Model with On-Device Updates [Online]. Available from:
https://developer.apple.com/documentation/coreml/model_personalization/
personalizing_a_model_with_on-device_updates [Accessed 2023-12-7].

Apple, 2023j. Recognizing Text in Images [Online]. Available from: https://developer.
apple.com/documentation/vision/recognizing_text_in_images [Accessed 2023-
10-27].

Apple, 2023k. SwiftUI [Online]. Available from: https://developer.apple.com/xcode/
swiftui/ [Accessed 2023-11-2].

Apple, 2023l. Xcode 15 [Online]. Available from: https://developer.apple.com/xcode/
[Accessed 2023-11-3].

Aşıroğlu, B., Mete, B.R., Yıldız, E., Nalçakan, Y., Sezen, A., Dağtekin, M. and Ensari, T.,
2019. Automatic HTML Code Generation from Mock-Up Images Using Machine Learning
Techniques. 2019 scientific meeting on electrical-electronics & biomedical engineering and
computer science (ebbt) [Online], 00, pp.1–4. Available from: https://doi.org/10.
1109/ebbt.2019.8741736.

Babich, N., 2023. Low fidelity vs. high fidelity: the differences between design prototypes. Avail-
able from: https://webflow.com/blog/low-vs-high-fidelity#::text=Fidelity%
20can%20vary%20in%20content,possible%20to%20the%20final%20design. [Ac-
cessed 2023-11-24].

Bajammal, M., Mazinanian, D. and Mesbah, A., 2018. Generating reusable web components
from mockups. Proceedings of the 33rd acm/ieee international conference on automated
software engineering [Online], 00, pp.601–611. Available from: https://doi.org/10.
1145/3238147.3238194.

Baulé, D., Wangenheim, C.G.v., Wangenheim, A. and Hauck, J.C.R., 2020. Recent Progress
in Automated Code Generation from GUI Images Using Machine Learning Techniques. Jucs
- journal of universal computer science [Online], 26(9), pp.1095–1127. Available from:
https://doi.org/10.3897/jucs.2020.058.

Baulé, D., Wangenheim, C.G.v., Wangenheim, A.v., Hauck, J.C.R. and Júnior, E.C.V., 2021.
Automatic code generation from sketches of mobile applications in end-user development
using Deep Learning. arxiv [Online]. 2103.05704, Available from: https://doi.org/10.
48550/arxiv.2103.05704.

Beltramelli, T., 2017. pix2code: Generating Code from a Graphical User Interface Screenshot.
arxiv [Online]. 1705.07962, Available from: https://doi.org/10.48550/arxiv.1705.
07962.

Biswas, S., Wardat, M. and Rajan, H., 2022. The art and practice of data science pipelines.
Proceedings of the 44th international conference on software engineering [Online], pp.2091–
2103. 2112.01590, Available from: https://doi.org/10.1145/3510003.3510057.

https://developer.apple.com/swift-playgrounds/
https://developer.apple.com/swift-playgrounds/
https://developer.apple.com/documentation/coreml/mlmodel/3600218-load
https://developer.apple.com/documentation/coreml/mlmodel/3600218-load
https://developer.apple.com/documentation/coreml/model_personalization/personalizing_a_model_with_on-device_updates
https://developer.apple.com/documentation/coreml/model_personalization/personalizing_a_model_with_on-device_updates
https://developer.apple.com/documentation/vision/recognizing_text_in_images
https://developer.apple.com/documentation/vision/recognizing_text_in_images
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/xcode/
https://doi.org/10.1109/ebbt.2019.8741736
https://doi.org/10.1109/ebbt.2019.8741736
https://webflow.com/blog/low-vs-high-fidelity#::text=Fidelity%20can%20vary%20in%20content,possible%20to%20the%20final%20design.
https://webflow.com/blog/low-vs-high-fidelity#::text=Fidelity%20can%20vary%20in%20content,possible%20to%20the%20final%20design.
https://doi.org/10.1145/3238147.3238194
https://doi.org/10.1145/3238147.3238194
https://doi.org/10.3897/jucs.2020.058
2103.05704
https://doi.org/10.48550/arxiv.2103.05704
https://doi.org/10.48550/arxiv.2103.05704
1705.07962
https://doi.org/10.48550/arxiv.1705.07962
https://doi.org/10.48550/arxiv.1705.07962
2112.01590
https://doi.org/10.1145/3510003.3510057


BIBLIOGRAPHY 71

Bochkovskiy, A., 2023. Yolo v4, v3 and v2 for Windows and Linux [Online]. Available from:
https://github.com/AlexeyAB/darknet [Accessed 2023-10-12].

Bove, T., 2023a. PyTorch Conversion Workflow [Online]. Available from:
https://apple.github.io/coremltools/docs-guides/source/convert-pytorch-
workflow.html [Accessed 2023-10-22].

Bove, T., 2023b. What Is Core ML Tools? [Online]. Available from: https://apple.github.
io/coremltools/docs-guides/source/overview-coremltools.html [Accessed 2023-
10-12].

Brie, P., 2019. The Second Version of Our Vision API [Online]. Available from: https:
//teleporthq.io/blog/new-vision-api [Accessed 2023-9-22].

Calò, T. and Russis, L.D., 2022. Style-Aware Sketch-to-Code Conversion for the Web.
Companion of the 2022 acm sigchi symposium on engineering interactive computing systems
[Online], pp.44–47. Available from: https://doi.org/10.1145/3531706.3536462.

Carter, A.S. and Hundhausen, C.D., 2010. How is User Interface Prototyping Really Done in
Practice? A Survey of User Interface Designers. 2010 ieee symposium on visual languages
and human-centric computing [Online], pp.207–211. Available from: https://doi.org/
10.1109/vlhcc.2010.36.

Cheng, J., Tan, D., Zhang, T., Wei, A. and Chen, J., 2022. YOLOv5-MGC: GUI Element Iden-
tification for Mobile Applications Based on Improved YOLOv5. Mobile information systems
[Online], 2022, pp.1–9. Available from: https://doi.org/10.1155/2022/8900734.

Chin, M., 2021. Apple says you can build apps on an iPad now, but devs say the reality
is trickier. Available from: https://www.theverge.com/2021/6/15/22534902/ipad-
pro-apple-swift-playgrounds-4-wwdc-2021 [Accessed 2023-11-3].

Dalmasso, I., Datta, S.K., Bonnet, C. and Nikaein, N., 2013. Survey, Comparison and
Evaluation of Cross Platform Mobile Application Development Tools. 2013 9th international
wireless communications and mobile computing conference (iwcmc) [Online], 1, pp.323–328.
Available from: https://doi.org/10.1109/iwcmc.2013.6583580.

Dawson, C.W., 2015. Projects in Computing and Information Systems. 3rd ed. Pearson
Education Limited.

Deka, B., Huang, Z., Franzen, C., Hibschman, J., Afergan, D., Li, Y., Nichols, J. and Kumar,
R., 2017. Rico: A Mobile App Dataset for Building Data-Driven Design Applications.
Proceedings of the 30th annual acm symposium on user interface software and technology
[Online], pp.845–854. Available from: https://doi.org/10.1145/3126594.3126651.

Delía, L., Galdamez, N., Corbalan, L., Pesado, P. and Thomas, P., 2017. Approaches
to mobile application development: Comparative performance analysis [Online]. 2017
computing conference. pp.652–659. Available from: https://doi.org/10.1109/SAI.
2017.8252165.

Dogtiev, A., 2023. App Development Cost. Available from: https://www.businessofapps.
com/app-developers/research/app-development-cost/ [Accessed 2023-11-24].

Flarup, M., 2016. What You Should Know About The App Design Process [Online]. Avail-

https://github.com/AlexeyAB/darknet
https://apple.github.io/coremltools/docs-guides/source/convert-pytorch-workflow.html
https://apple.github.io/coremltools/docs-guides/source/convert-pytorch-workflow.html
https://apple.github.io/coremltools/docs-guides/source/overview-coremltools.html
https://apple.github.io/coremltools/docs-guides/source/overview-coremltools.html
https://teleporthq.io/blog/new-vision-api
https://teleporthq.io/blog/new-vision-api
https://doi.org/10.1145/3531706.3536462
https://doi.org/10.1109/vlhcc.2010.36
https://doi.org/10.1109/vlhcc.2010.36
https://doi.org/10.1155/2022/8900734
https://www.theverge.com/2021/6/15/22534902/ipad-pro-apple-swift-playgrounds-4-wwdc-2021
https://www.theverge.com/2021/6/15/22534902/ipad-pro-apple-swift-playgrounds-4-wwdc-2021
https://doi.org/10.1109/iwcmc.2013.6583580
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1109/SAI.2017.8252165
https://doi.org/10.1109/SAI.2017.8252165
https://www.businessofapps.com/app-developers/research/app-development-cost/
https://www.businessofapps.com/app-developers/research/app-development-cost/


BIBLIOGRAPHY 72

able from: https://www.smashingmagazine.com/2016/11/what-everyone-should-
know-about-the-process-behind-app-design/ [Accessed 2023-4-16].

Flora, H.K., Wang, X. and Chande, S.V., 2014. An Investigation into Mobile Application
Development Processes: Challenges and Best Practices. International journal of modern
education and computer science [Online], 6(6), pp.1–9. Available from: https://doi.
org/10.5815/ijmecs.2014.06.01.

Google, 2023a. Android Studio [Online]. Available from: https://developer.android.
com/studio [Accessed 2023-12-5].

Google, 2023b. Cloud Storage for Firebase [Online]. Available from: https://firebase.
google.com/docs/storage [Accessed 2023-10-12].

Google, 2023c. Compose layout basics [Online]. Available from: https://developer.
android.com/jetpack/compose/layouts/basics [Accessed 2023-12-7].

Google, 2023d. Firebase [Online]. Available from: https://firebase.google.com/ [Ac-
cessed 2023-10-12].

Google, 2023e. Layouts in Views [Online]. Available from: https://developer.android.
com/develop/ui/views/layout/declaring-layout [Accessed 2023-12-7].

Ha, D. and Eck, D., 2017. A Neural Representation of Sketch Drawings. arxiv [Online].
1704.03477, Available from: https://doi.org/10.48550/arxiv.1704.03477.

Jain, V., Agrawal, P., Banga, S., Kapoor, R. and Gulyani, S., 2019. Sketch2Code: Transforma-
tion of Sketches to UI in Real-time Using Deep Neural Network. arxiv [Online]. 1910.08930,
Available from: https://doi.org/10.48550/arxiv.1910.08930.

Jiang, P., Ergu, D., Liu, F., Cai, Y. and Ma, B., 2022. A Review of Yolo Algorithm
Developments. Procedia computer science [Online], 199, pp.1066–1073. Available from:
https://doi.org/10.1016/j.procs.2022.01.135.

Jocher, G., 2023. YOLOv5 Pretrained Checkpoints [Online]. Available from: https://github.
com/ultralytics/yolov5#pretrained-checkpoints [Accessed 2023-10-12].

King, M., 2023. App Development Process. Available from: https://www.businessofapps.
com/app-developers/research/app-development-process/ [Accessed 2023-11-24].

Leivers, D., 2023a. Experiments with Swift Playgrounds and FileDocument (or, how
to save your project to an Apple FileDocument type) [Online]. Available from:
https://medium.com/@sofaracing/experiments-with-swift-playgrounds-and-
filedocument-or-how-to-save-your-project-to-an-apple-5347a2f4c94 [Ac-
cessed 2023-11-3].

Leivers, D., 2023b. Near real-time UI code generation on iPad [Online]. Available from:
https://www.youtube.com/watch?v=SKGdZ3H9eyY [Accessed 2023-11-16].

Lepore, T., 2010. Sketches and Wireframes and Prototypes! Oh My! Creat-
ing Your Own Magical Wizard Experience [Online]. Available from: https:
//www.uxmatters.com/mt/archives/2010/05/sketches-and-wireframes-and-
prototypes-oh-my-creating-your-own-magical-wizard-experience.php [Ac-
cessed 2023-4-10].

https://www.smashingmagazine.com/2016/11/what-everyone-should-know-about-the-process-behind-app-design/
https://www.smashingmagazine.com/2016/11/what-everyone-should-know-about-the-process-behind-app-design/
https://doi.org/10.5815/ijmecs.2014.06.01
https://doi.org/10.5815/ijmecs.2014.06.01
https://developer.android.com/studio
https://developer.android.com/studio
https://firebase.google.com/docs/storage
https://firebase.google.com/docs/storage
https://developer.android.com/jetpack/compose/layouts/basics
https://developer.android.com/jetpack/compose/layouts/basics
https://firebase.google.com/
https://developer.android.com/develop/ui/views/layout/declaring-layout
https://developer.android.com/develop/ui/views/layout/declaring-layout
1704.03477
https://doi.org/10.48550/arxiv.1704.03477
1910.08930
https://doi.org/10.48550/arxiv.1910.08930
https://doi.org/10.1016/j.procs.2022.01.135
https://github.com/ultralytics/yolov5#pretrained-checkpoints
https://github.com/ultralytics/yolov5#pretrained-checkpoints
https://www.businessofapps.com/app-developers/research/app-development-process/
https://www.businessofapps.com/app-developers/research/app-development-process/
https://medium.com/@sofaracing/experiments-with-swift-playgrounds-and-filedocument-or-how-to-save-your-project-to-an-apple-5347a2f4c94
https://medium.com/@sofaracing/experiments-with-swift-playgrounds-and-filedocument-or-how-to-save-your-project-to-an-apple-5347a2f4c94
https://www.youtube.com/watch?v=SKGdZ3H9eyY
https://www.uxmatters.com/mt/archives/2010/05/sketches-and-wireframes-and-prototypes-oh-my-creating-your-own-magical-wizard-experience.php
https://www.uxmatters.com/mt/archives/2010/05/sketches-and-wireframes-and-prototypes-oh-my-creating-your-own-magical-wizard-experience.php
https://www.uxmatters.com/mt/archives/2010/05/sketches-and-wireframes-and-prototypes-oh-my-creating-your-own-magical-wizard-experience.php


BIBLIOGRAPHY 73

Lin, T.Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan,
D., Zitnick, C.L. and Dollár, P., 2014. Microsoft COCO: Common Objects in Context. arxiv
[Online]. 1405.0312, Available from: https://doi.org/10.48550/arxiv.1405.0312.

Liu, Y., Hu, Q. and Shu, K., 2018. Improving pix2code based Bi-directional LSTM. 2018
ieee international conference on automation, electronics and electrical engineering (auteee)
[Online], 00, pp.220–223. Available from: https://doi.org/10.1109/auteee.2018.
8720784.

Meta, 2023a. Communication between native and React Native [Online]. Available from:
https://reactnative.dev/docs/communication-ios [Accessed 2023-12-5].

Meta, 2023b. JavaScript Environment [Online]. Available from: https://reactnative.dev/
docs/javascript-environment [Accessed 2023-12-5].

Microsoft, 2019. Sketch2Code (Documentation) [Online]. Available from: https://github.
com/microsoft/ailab/tree/master/Sketch2Code [Accessed 2023-4-16].

MIT, 2022. MIT App Inventor [Online]. Available from: https://appinventor.mit.edu
[Accessed 2023-3-28].

Mohian, S. and Csallner, C., 2020. Doodle2App. Proceedings of the ieee/acm 7th international
conference on mobile software engineering and systems [Online], pp.81–84. Available from:
https://doi.org/10.1145/3387905.3388607.

Nawrocki, P., Wrona, K., Marczak, M. and Sniezynski, B., 2021. A Comparison of Native and
Cross-Platform Frameworks for Mobile Applications. Computer [Online], 54(3), pp.18–27.
Available from: https://doi.org/10.1109/mc.2020.2983893.

Neubeck, A. and Gool, L.V., 2006. Efficient Non-Maximum Suppression. 18th international
conference on pattern recognition (icpr’06) [Online], 3, pp.850–855. Available from: https:
//doi.org/10.1109/icpr.2006.479.

Nguyen, T.A. and Csallner, C., 2015. Reverse Engineering Mobile Application User Interfaces
with REMAUI (T). 2015 30th ieee/acm international conference on automated software
engineering (ase) [Online], pp.248–259. Available from: https://doi.org/10.1109/ase.
2015.32.

Nikam, C., Keshervani, R., Shah, S. and Aghav, J., 2021. Code Generation from Images Using
Neural Networks. Algorithms for intelligent systems [Online], pp.149–160. Available from:
https://doi.org/10.1007/978-981-16-3802-2_12.

Orhon, A., Wadhwa, A., Kim, Y., Rossi, F. and Jagadeesh, V., 2022. Deploying Transformers
on the Apple Neural Engine [Online]. Available from: https://machinelearning.apple.
com/research/neural-engine-transformers [Accessed 2023-10-12].

Pandian, V.P.S., Suleri, S. and Jarke, M., 2020. Syn: Synthetic Dataset for Training UI
Element Detector From Lo-Fi Sketches. Proceedings of the 25th international conference
on intelligent user interfaces companion [Online], pp.79–80. Available from: https://doi.
org/10.1145/3379336.3381498.

Pandian, V.P.S., Suleri, S. and Jarke, M., 2021a. SynZ: Enhanced Synthetic Dataset for
Training UI Element Detectors. 26th international conference on intelligent user interfaces
[Online], pp.67–69. Available from: https://doi.org/10.1145/3397482.3450725.

1405.0312
https://doi.org/10.48550/arxiv.1405.0312
https://doi.org/10.1109/auteee.2018.8720784
https://doi.org/10.1109/auteee.2018.8720784
https://reactnative.dev/docs/communication-ios
https://reactnative.dev/docs/javascript-environment
https://reactnative.dev/docs/javascript-environment
https://github.com/microsoft/ailab/tree/master/Sketch2Code
https://github.com/microsoft/ailab/tree/master/Sketch2Code
https://appinventor.mit.edu
https://doi.org/10.1145/3387905.3388607
https://doi.org/10.1109/mc.2020.2983893
https://doi.org/10.1109/icpr.2006.479
https://doi.org/10.1109/icpr.2006.479
https://doi.org/10.1109/ase.2015.32
https://doi.org/10.1109/ase.2015.32
https://doi.org/10.1007/978-981-16-3802-2_12
https://machinelearning.apple.com/research/neural-engine-transformers
https://machinelearning.apple.com/research/neural-engine-transformers
https://doi.org/10.1145/3379336.3381498
https://doi.org/10.1145/3379336.3381498
https://doi.org/10.1145/3397482.3450725


BIBLIOGRAPHY 74

Pandian, V.P.S., Suleri, S. and Jarke, P.D.M., 2021b. UISketch: A Large-Scale Dataset of UI
Element Sketches. Proceedings of the 2021 chi conference on human factors in computing sys-
tems [Online], pp.1–14. Available from: https://doi.org/10.1145/3411764.3445784.

Prakash, J., 2021. Non Maximum Suppression: Theory and Implementation in PyTorch [Online].
Available from: https://learnopencv.com/non-maximum-suppression-theory-and-
implementation-in-pytorch/ [Accessed 2023-10-22].

Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., 2016. You Only Look Once: Unified, Real-
Time Object Detection. 2016 ieee conference on computer vision and pattern recognition
(cvpr) [Online], pp.779–788. Available from: https://doi.org/10.1109/cvpr.2016.91.

Redmon, J. and Farhadi, A., 2017. YOLO9000: Better, Faster, Stronger. 2017 ieee conference
on computer vision and pattern recognition (cvpr) [Online], pp.6517–6525. Available from:
https://doi.org/10.1109/cvpr.2017.690.

Ren, S., He, K., Girshick, R. and Sun, J., 2016. Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. Ieee transactions on pattern analysis and machine
intelligence [Online], 39(6), pp.1137–1149. Available from: https://doi.org/10.1109/
tpami.2016.2577031.

Robinson, A., 2019. Sketch2code: Generating a website from a paper mockup. arxiv [Online].
1905.13750, Available from: https://doi.org/10.48550/arxiv.1905.13750.

Selcuk, B. and Serif, T., 2023. A Comparison of YOLOv5 and YOLOv8 in the Context of
Mobile UI Detection. Lecture notes in computer science [Online], pp.161–174. Available
from: https://doi.org/10.1007/978-3-031-39764-6_11.

Solawetz, J., 2020. What is YOLOv5? A Guide for Beginners. [Online]. Avail-
able from: https://blog.roboflow.com/yolov5-improvements-and-evaluation/
#origin-of-yolov5-an-extension-of-yolov3-pytorch [Accessed 2023-10-12].

StackOverflow, 2023. 2023 Developer Survey [Online]. Available from: https:
//survey.stackoverflow.co/2023/#section-top-paying-technologies-top-
paying-technologies [Accessed 2023-11-24].

UXPin, 2021. High-Fidelity Prototyping vs Low-Fidelity Prototypes: Which to Choose When?
[Online]. Available from: https://www.uxpin.com/studio/blog/high-fidelity-
prototyping-low-fidelity-difference/ [Accessed 2023-11-24].

Willocx, M., Vossaert, J. and Naessens, V., 2015. A quantitative assessment of performance
in mobile app development tools [Online]. 2015 ieee international conference on mobile
services. pp.454–461. Available from: https://doi.org/10.1109/MobServ.2015.68.

Wimmer, C., Untertrifaller, A. and Grechenig, T., 2020. SketchingInterfaces: A Tool for
Automatically Generating High-Fidelity User Interface Mockups from Hand-Drawn Sketches.
32nd australian conference on human-computer interaction [Online], pp.538–545. Available
from: https://doi.org/10.1145/3441000.3441015.

Zhang, H., Cisse, M., Dauphin, Y.N. and Lopez-Paz, D., 2017. mixup: Beyond Empirical Risk
Minimization. arxiv [Online]. 1710.09412, Available from: https://doi.org/10.48550/
arxiv.1710.09412.

https://doi.org/10.1145/3411764.3445784
https://learnopencv.com/non-maximum-suppression-theory-and-implementation-in-pytorch/
https://learnopencv.com/non-maximum-suppression-theory-and-implementation-in-pytorch/
https://doi.org/10.1109/cvpr.2016.91
https://doi.org/10.1109/cvpr.2017.690
https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.1109/tpami.2016.2577031
1905.13750
https://doi.org/10.48550/arxiv.1905.13750
https://doi.org/10.1007/978-3-031-39764-6_11
https://blog.roboflow.com/yolov5-improvements-and-evaluation/#origin-of-yolov5-an-extension-of-yolov3-pytorch
https://blog.roboflow.com/yolov5-improvements-and-evaluation/#origin-of-yolov5-an-extension-of-yolov3-pytorch
https://survey.stackoverflow.co/2023/#section-top-paying-technologies-top-paying-technologies
https://survey.stackoverflow.co/2023/#section-top-paying-technologies-top-paying-technologies
https://survey.stackoverflow.co/2023/#section-top-paying-technologies-top-paying-technologies
https://www.uxpin.com/studio/blog/high-fidelity-prototyping-low-fidelity-difference/
https://www.uxpin.com/studio/blog/high-fidelity-prototyping-low-fidelity-difference/
https://doi.org/10.1109/MobServ.2015.68
https://doi.org/10.1145/3441000.3441015
1710.09412
https://doi.org/10.48550/arxiv.1710.09412
https://doi.org/10.48550/arxiv.1710.09412


Appendix A

Raw Results Output

A.1 User survey results

The results of the user survey we conducted (see Chapter 6) are presented in the tables below.

75



A
P
P
EN

D
IX

A
.

R
AW

R
ESU

LT
S

O
U

T
P
U

T
76

Participant Role Question 1 Question 2 Question 3 Question 4 Question 5
A Developer 5 Hand drawing is pretty

intuitive, the recogni-
tion can be a bit off
sometimes

Being able to correct
the model would be
handy.
Once classified it would
be good to be able to
move the sketched ele-
ments around to reposi-
tion

Partly, the model some-
times can’t determine
what I’ve drawn

Yes

B Designer 4 There’s a bit of a
delay when generat-
ing/recognition, the
colour choices (i.e. the
nav bar being blue) was
unexpected, wouldn’t
know which panel to
draw on immediately,
needs the intro

Split the screen better
to be clearer on what
is the sketching space
and what is the preview
space, Figma does this
well.
Could also import im-
ages of sketches.

Can’t really user test
with it but in a meet-
ing this would be a good
way to show/communi-
cate to stakeholders on
the fly

Yes

C Developer 3.5 Very easy to draw dia-
grams

A way to add certain
common shapes / view
types and make them
drag and drop would
make it easier for my-
self as I can’t draw to
save my life. It would
be nice to be able to
extend the length of a
drawing to show that
content should scroll

It worked well for and
mostly correctly identi-
fied what I was attempt-
ing to draw.
The option to choose
between SwiftUI and
UIKit would make it
more effective for me.

Not yet as I don’t use
SwiftUI, if it was UIKit
then yes it would.



A
P
P
EN

D
IX

A
.

R
AW

R
ESU

LT
S

O
U

T
P
U

T
77

D Product
manager

3 Didn’t know what
components it would
or wouldn’t recognise,
what the limitations
were.
When it did things
wrong I didn’t know how
to correct it.

I would have some sort
of onboarding and ex-
pose the debug view of
what the AI is seeing to
the user

No No

E Developer 5 Drawing was easy and
responsive. Generation
of prototype was quick
to pick up what I had
drawn.

It got most of what I
added to the screen cor-
rect and created valid
code

It definitely gives a good
starting point for the
code to work from



A
P
P
EN

D
IX

A
.

R
AW

R
ESU

LT
S

O
U

T
P
U

T
78

F UX designer 2 Because of the detec-
tion issues the undo
function plays a crucial
role, and the proximity
thing where it struggles
with elements drawn
too close together.
I liked how you showed
me what you could
draw, that’s how I
would have drawn an
image but some proper
onboarding might be
good.

More prominent undo
button, proper onboard-
ing screen(s).
Styles of things like,
say, a checkbox and
you could change to
a switch instead of a
checkbox. And then
do the same sort of
thing but maybe there’s,
like, a single gesture
to draw one of those
things and then you can
then just somehow tog-
gle them into different
modes. Grid alignment
as well.
I wanted to change
pen styles as well and
do things with that
like typographic hierar-
chy. As well as drag and
pinch and zoom on ele-
ments that were already
drawn.

Not really but it could
do if it was more reli-
able.

Kind of, given the code
output it’s actually re-
ally useful as I can’t
write any SwiftUI right
now so this gives me a
starting point.



A
P
P
EN

D
IX

A
.

R
AW

R
ESU

LT
S

O
U

T
P
U

T
79

Participant Question 6 Question 7 Question 8 Question 9 Question 10
A It would massively help

you to quickly wire-
frame and present to
people a fully formed
UI.

N/A N/A N/A Yes

B I’d have to use it prop-
erly in the design pro-
cess to give an accurate
answer, but a finished
version would probably
speed me up. More in
the early stages of a
project for testing quick
ideas and communicat-
ing with stakeholders or
in a workshop.

It’s a nice way to en-
courage people to get
involved in drawing in
workshops as they won’t
be judged on their draw-
ing skills.

It has the potential to
complement.

Would want a way
to share a prototype
quickly with users for
testing.

It has the potential to
potential to but not cur-
rently. Does have the
potential to encourage
more people to input in
the early stages.

C Being able to quickly
get a code-able design
to experiment with with-
out having to first cre-
ate the a design via
Sketch/Figma.

It helps for prototyping
ideas, as it reduces the
feedback cycle.

Exporting more file for-
mats would be interest-
ing, Sketch/Figma/P-
NGs so someone other
than a developer can see
the design.

Compared to pencil and
paper this is much
faster.

D Kinda no We tend to prototype
straight into Figma and
rarely do paper drawing

Neither



A
P
P
EN

D
IX

A
.

R
AW

R
ESU

LT
S

O
U

T
P
U

T
80

E With more accuracy
then the productivity
gains could be large

It would be easy to im-
plement into the exist-
ing flow due to the abil-
ity to export the gener-
ated code

Definitely complements Being able to import
something from Figma
or Sketch for example
would be great

Yes, I can see this
tool providing more real-
world and achievable de-
signs and would identify
potential design limita-
tions earlier

F Kinda I do a lot on white-
boards, if it could do
that with a big undo
button it would be
amazing

Neither We don’t really do pen
and paper



A
P
P
EN

D
IX

A
.

R
AW

R
ESU

LT
S

O
U

T
P
U

T
81

Participant Question 11 Question 12 Question 13 Question 14 Question 15
A For prototyping and get-

ting stakeholders to un-
derstand it would save
hours of work.

Although it generates
absolutely positioned
code it gives a good
starting point for a
junior developer to be
given the code and run
with it.

Could do with more
white space/indenting.
Code itself is fine.
Might be nice to have
some comments on
positioning so you can
relate it back to the
preview/sketch as the
code output doesn’t
match the order of the
sketch (left to right or
top to bottom) so it
can be hard to identify
which code block is
which element

Yes There could be better
support for theming the
UI. Having support to
add colours from the
client’s brand in quickly
would be a massive sell-
ing point.

B Not a developer Not a developer but
could figure some bits
out

Could edit basic things
like words but would
probably change things
like words by editing the
drawing.

Doesn’t offer enough
flexibility for brands or
if you wanted to do
high fidelity, but it of-
fers enough flexibility
for wire-frames

C Being able to prototype
quickly has greatly im-
proved efficiency.

Whilst not perfect, it is
human readable making
it easy to make tweaks
to fix it.

Yes fine-tuning is possi-
ble as the code is easily
readable

It’s limited to fairly sim-
ple designs currently,
which works well for
prototyping but not for
more involved screens.

D I think I could work out
some things to change



A
P
P
EN

D
IX

A
.

R
AW

R
ESU

LT
S

O
U

T
P
U

T
82

E Hard to say at this
stage, but the possibili-
ties are significant

It’s basic but does the
job. Would be good to
add colours and other
design elements (im-
ages)

The code is basic but
is runnable, valid code
that forms a basis to it-
erate from

Yes, absolutely for the
reasons mentioned in
the "Design Quality"
section

It picked up a number
of different controls and
placement so there is a
good amount of flexibil-
ity. Additional native
controls would be useful
(such as switches, slid-
ers)

F Not so much Yeah I could figure it
out

Yeah it gives me a star-
ing point



A
P
P
EN

D
IX

A
.

R
AW

R
ESU

LT
S

O
U

T
P
U

T
83

Participant Question 16 Question 17 Question 18 Question 19
A Object recognition and

not having the option
to classify or correct the
model yourself is the
biggest pain point. You
have to just rub it out
and try again.

Yes, I would say this is a re-
ally good alpha product and
demonstrates what the app is
trying to do.

Theming, i.e. specifying de-
fault colours or fonts. Clas-
sifying items yourself. The
ability to add multiple screens
and link them together so
that a button navigates to an-
other screen. Being able to
move the drawn UI elements
around.

They’re not similar enough, other design
tools are things like Adobe XD or Figma
which offer a different feature set.



A
P
P
EN

D
IX

A
.

R
AW

R
ESU

LT
S

O
U

T
P
U

T
84

B Just the onboarding of
figuring out where to
draw initially.

Yeah it’s cool, it’s in a place
where I could use it for early
stage design bits.

Figma is my normal tool and you’d have to
create the whole thing in Figma whereas
this you can just create a sketch. Figma
however gives a huge amount of control of
what the end result looks like and config-
uring what happens between screens, it’s
getting swanky. Easy to share a Figma
design with users but it’s not as quick
to make. Protopie is another but that
needs quite a lot of specific knowledge
and is hard to adopt, but you can put
logic in to it, you can do motion and
swanky stuff but it’s quite niche and hard
to learn and slow to build. You export to
Protopie from Figma and you have to be
very careful about layer names whereas
most designers don’t bother naming layers
as there’s loads of them. Marvel lets you
take a picture of a sketch and turn it in
to a clickable prototype but you have to
manually label the areas in the image.

C My lack of ability to
draw what I wanted
didn’t always give the
AI the chance to un-
derstand what I wanted,
some prebuilt drag and
drop elements might
help with this.

Yes for quickly prototyping
ideas

Additional "assistance"
when drawing (drag and
drop pre-drawn elements).
Exporting more file types:
PNG/Sketch/Figma Support
for UIKit

I often use sketch to prototype designs.
Sketch allows for more detailed designs
but this allows me to instantly get usable
code to prototype with.

D Yes



A
P
P
EN

D
IX

A
.

R
AW

R
ESU

LT
S

O
U

T
P
U

T
85

E Some elements were not
identified correctly and
there is no option to tell
the program that it is
incorrect and needs to
"try again"!

It’s an impressive prototype
to be able to do what it does,
and so quickly. It would need
more work to become fully
adoptable but I would defi-
nitely recommend it.

As above, it needs to be more
flexible to identify more com-
ponents and more advanced
layouts (being able to arrange
into a stack view for example)

There’s nothing like it

F Detection was flaky and
drawing elements close
together didn’t really
work

It’s not a comparison I can make because
there’s just nothing like it, it’s kind of like
no-code swift.



APPENDIX A. RAW RESULTS OUTPUT 86

A.2 Model performance

The following table lists the time taken for the model to detect and classify elements on a
given image and the total time including generation of the code and UI elements.

Run Detection/classification Detection/classification and generation

1 2.200407 2.683552
2 2.222996 2.698845
3 2.249525 2.716664
4 2.283714 2.725142
5 2.306578 2.740880
6 2.335309 2.757163
7 2.359915 2.776879
8 0.122166 0.142193
9 0.131363 0.151537
10 0.126699 0.147279
11 0.105334 0.137893
12 0.113050 0.133771
13 0.117333 0.158697
14 0.116052 0.122958
15 0.108991 0.148219
16 0.120250 0.158703
17 0.129776 0.172703
18 0.113283 0.153022
19 0.114700 0.153700
20 0.126755 0.166771
21 0.132006 0.170730
22 0.116697 0.156618
23 0.130657 0.161833
24 0.120297 0.170574
25 0.129638 0.205070
26 0.116375 0.179115
27 0.118080 0.162460
28 0.133685 0.172663

Table A.5: The time taken in seconds to run our trained model and the time taken to run our
model and generate code.



Appendix B

Model

(a) The start of the pipeline
(b) The middle of the pipeline
(continuing from the bottom of
B.1a)

(c) The end of the pipeline
(continuing from the bottom
of B.1b)

Figure B.1: The full pipeline containing the trained model and the NMS model at the end.

87


	Introduction
	High fidelity vs. low fidelity
	SwiftUI
	Deep learning
	What are we doing differently?
	Research question
	Problem conclusion

	Literature and Technology Survey
	Introduction
	Mobile app design
	Sketch input
	Approaches for object detection and classification
	You only look once (YOLO)

	Training data
	Approaches for code generation
	Native vs. cross-platform development
	Native development
	Cross-platform development

	Performance evaluation
	Literature review conclusion

	Requirements
	Introduction
	Goals
	Detailed requirements
	Conclusion

	Design
	Data capture tool
	Data acquisition and preparation

	Training the model
	Modeling
	Training
	Evaluation

	Drawing app
	Prediction
	Visualisation


	Implementation and Testing
	Data capture tool
	User consent
	Example apps
	Drawing
	Labelling
	Post processing and storing

	Training the model
	Data
	Fetching and pre-processing
	Training
	Converting to CoreML
	Non-maximum suppression (NMS)

	Drawing app
	Making predictions
	Preview generation
	Code generation
	Performance
	Exporting

	Conclusion

	Results
	Introduction
	Questions
	Themes
	Theme 1: Detection and classification
	Theme 2: Correcting
	Theme 3: Onboarding
	Theme 4: Drawing and responsiveness
	Theme 5: Transitioning to code
	Theme 6: Theming
	Theme 7: Other tools and user workflows

	Conclusion

	Discussion and critical reflection
	Data capture tool
	Training the model
	Drawing app
	Code generation and exporting
	Compatibility with users' workflows
	Conclusion

	Conclusion
	Contributions
	Comparison to our original requirements
	Future work
	Improvements to the data capture tool
	Model training
	Detection and classification
	Other platforms and languages
	Extending code generation
	High fidelity design output
	General improvements


	Bibliography
	Raw Results Output
	User survey results
	Model performance

	Model

